Publications

8 Results
Skip to search filters

Ensuring a Nuclear Power Plant Safe State Following an EMP Event - Task 7 Deliverable: EMP Testing of Secondary Coupling to Instrumentation Cables

Bowman, Tyler B.; Guttromson, Ross G.; Martin, Luis S.

Sandia National Laboratories performed tests to address the potential vulnerability concerns of a coupled High-Altitude Electromagnetic Pulse (HEMP) inducing secondary coupling onto critical instrumentation and control cables in a nuclear power plant, with specific focus on early-time HEMP. Three types of receiving cables in nine configurations were tested to determine transfer functions between two electrically separated cables referenced to the common mode input current on the transmitting cable. One type of transfer function related the input short circuit current and resulting open circuit voltage on the receiving cable. The other transfer function related the input short circuit current and the resulting short circuit current on the receiving cable. A 500 A standard HEMP waveform was input into the transfer functions to calculate peak coupling values on the receiving cables. The highest level of coupling using the standard waveform occurred when cables were in direct contact, with a peak short circuit current of 85 A and open circuit voltage of 9.8 kV, while configurations with separated cables predicted coupling levels of less than 5 A or 500 V.

More Details

Penetration Bounds For Azimuthal Slot On Infinite Cylinder With Finite Length Backing Cylindrical Cavity

Warne, Larry K.; Campione, Salvatore; Martin, Luis S.; Pack, Alden R.; Langston, William L.; Zinser, Brian &.

We examine coupling into azimuthal slots on an infinite cylinder with a infinite length interior cavity operating both at the fundamental cavity modal frequencies, with small slots and a resonant slot, as well as higher frequencies. The coupling model considers both radiation on an infinite cylindrical exterior as well as a half space approximation. Bounding calculations based on maximum slot power reception and interior power balance are also discussed in detail and compared with the prior calculations. For higher frequencies limitations on matching are imposed by restricting the loads ability to shift the slot operation to the nearest slot resonance; this is done in combination with maximizing the power reception as a function of angle of incidence. Finally, slot power mismatch based on limited cavity load quality factor is considered below the first slot resonance.

More Details

Electromagnetic Pulse – Resilient Electric Grid for National Security: Research Program Executive Summary

Guttromson, Ross G.; Lawton, Craig R.; Halligan, Matthew H.; Huber, Dale L.; Flicker, Jack D.; Hoffman, Matthew J.; Bowman, Tyler B.; Campione, Salvatore; Clem, Paul G.; Fiero, Andrew F.; Hansen, Clifford H.; Llanes, Rodrigo E.; Pfeiffer, Robert A.; Pierre, Brian J.; Martin, Luis S.; Sanabria, David E.; Schiek, Richard S.; Slobodyan, Oleksiy S.; Warne, Larry K.

Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.

More Details

Estimation of the Attenuation Caused by Power Line Towers on an E1-HEMP Induced Excitation

Martin, Luis S.; Warne, Larry K.

In a transmission line, the coupling between a line and a tower above ground is evaluated when the excitation is an E1 high-altitude electromagnetic pulse (HEMP). The model focuses on capturing correctly the effect of the coupling on the peak of the HEMP induced current that propagates along the line. This assessment is necessary to accurately estimate the effect of the excitation on the systems and components of the power grid. This analysis is a step towards a quantitative evaluation of HEMP excitation on the power grid. The results obtained indicate that the effect can be significant, especially for lines heights of 20 meters or more.

More Details

Decay Length Estimation of Single-, Two-,and Three-Wire Systems above Ground under HEMP Excitation

Progress In Electromagnetics Research B

Campione, Salvatore; Warne, Larry K.; Halligan, Matthew; Lavrova, Olga; Martin, Luis S.

We analytically model single-, two-, and three-wires above ground to determine the decay lengths of common and differential modes induced by an E1 high-altitude electromagnetic pulse (HEMP) excitation. Decay length information is pivotal to determine whether any two nodes in the power grid may be treated as uncoupled. We employ a frequency-domain method based on transmission line theory named ATLOG — Analytic Transmission Line Over Ground to model infinitely long and finite single wires, as well as solve the eigenvalue problem of a single-, two-, and three-wire system. Our calculations show that a single, semi-infinite power line can be approximated by a 10 km section of line and that the second electrical reflection for all line lengths longer than the decay length are below half the rated operating voltage. Furthermore, our results show that the differential mode propagates longer distances than the common mode in two-and three-wire systems, and this should be taken into account when performing damage assessment from HEMP excitation. This analysis is a significant step toward simplifying the modeling of practical continental grid lengths, yet maintaining accuracy, a result of enormous impact.

More Details
8 Results
8 Results