Publications

2 Results
Skip to search filters

An aluminum resist substrate for microfabrication by LIGA

Griffiths, Stewart K.; Lu, Wei-Yang L.; Hekmaty, Michelle A.; McLean, Dorrance E.; Yang, Chu-Yeu P.; Friedmann, Thomas A.; Losey, Matthew W.; Hachman, John T.; Skala, Dawn M.; Hunter, Lucas L.; Yang, Nancy Y.; Boehme, Dale R.; Korellis, John S.; Aigeldinger, Georg A.

Resist substrates used in the LIGA process must provide high initial bond strength between the substrate and resist, little degradation of the bond strength during x-ray exposure, acceptable undercut rates during development, and a surface enabling good electrodeposition of metals. Additionally, they should produce little fluorescence radiation and give small secondary doses in bright regions of the resist at the substrate interface. To develop a new substrate satisfying all these requirements, we have investigated secondary resist doses due to electrons and fluorescence, resist adhesion before exposure, loss of fine features during extended development, and the nucleation and adhesion of electrodeposits for various substrate materials. The result of these studies is a new anodized aluminum substrate and accompanying methods for resist bonding and electrodeposition. We demonstrate successful use of this substrate through all process steps and establish its capabilities via the fabrication of isolated resist features down to 6 {micro}m, feature aspect ratios up to 280 and electroformed nickel structures at heights of 190 to 1400 {micro}m. The minimum mask absorber thickness required for this new substrate ranges from 7 to 15 {micro}m depending on the resist thickness.

More Details

Assembly and electrical characterization of DNA-wrapped carbon nanotube devices

Proposed for publication in Journal of Vacuum Science and Technology B.

Dentinger, Paul M.; Pathak, Srikant P.; Jones, Frank E.; Hunter, Lucas L.; Leonard, Francois L.; Morales, Alfredo M.

In this article we report on the electrical characteristics of single wall carbon nanotubes (SWCNTs) wrapped with single-stranded deoxyribonucleic acid (ssDNA). We fabricate these devices using a solution-based method whereby SWCNTs are dispersed in aqueous solution using 20-mer ssDNA, and are placed across pairs of Au electrodes using alternating current dielectrophoresis (ACDEP). In addition to current voltage characteristics, we evaluate our devices using scanning electron microscopy and atomic force microscopy. We find that ACDEP with ssDNA based suspensions results in individual SWCNTs bridging metal electrodes, free of carbon debris, while similar devices prepared using the Triton X-100 surfactant yield nanotube bundles, and frequently have carbon debris attached to the nanotubes. Furthermore, the presence of ssDNA around the nanotubes does not appear to appreciably affect the overall electrical characteristics of the devices. In addition to comparing the properties of several devices prepared on nominally clean Au electrodes, we also investigate the effects of self-assembled monolayers of C{sub 14}H{sub 29}-SH alkyl thiol and benzyl mercaptan on the adhesion and electrical transport across the metal/SWCNT/metal devices.

More Details
2 Results
2 Results