Publications

4 Results
Skip to search filters

Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution

Journal of Neuroscience Methods

Sutherland, Vicki L.; Timlin, Jerilyn A.; Nieman, Linda T.; Guzowski, John F.; Chawla, Monica K.; Worley, Paul F.; Roysam, Badri; McNaughton, Bruce L.; Sinclair, Michael B.; Barnes, Carol A.

Simultaneous imaging of multiple cellular components is of tremendous importance in the study of complex biological systems, but the inability to use probes with similar emission spectra and the time consuming nature of collecting images on a confocal microscope are prohibitive. Hyperspectral imaging technology, originally developed for remote sensing applications, has been adapted to measure multiple genes in complex biological tissues. A spectral imaging microscope was used to acquire overlapping fluorescence emissions from specific mRNAs in brain tissue by scanning the samples using a single fluorescence excitation wavelength. The underlying component spectra obtained from the samples are then separated into their respective spectral signatures using multivariate analyses, enabling the simultaneous quantitative measurement of multiple genes either at regional or cellular levels. © 2006 Elsevier B.V. All rights reserved.

More Details

Hyperspectral imaging system for quantitative identification and discrimination of fluorescent labels in the presence of autofluorescence

2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings

Nieman, Linda T.; Sinclair, Michael B.; Timlin, Jerilyn A.; Jones, Howland D.; Haaland, David M.

Multivariate data analysis applied to hyperspectral images offers the unique opportunity to dramatically increase the amount of information gained from a single biological sample. Numerous fluorescent tags can be used to perform multiple studies in parallel from a single hyperspectral image scan. Highly spatially and spectrally overlapping fluorophores can be separated even amidst a large autofluorescence background with the use of multivariate curve resolution methods. The results of two biological samples with multiple fluorescent labels are shown and compared to a traditional filter-based multispectral system. These examples illustrate the combined power of the hyperspectral microscope hardware and the multivariate image analysis software for biomedical imaging. This technique has the potential to be applied to a broad array of biological applications where fluorescent tags are a central and ubiquitous tool, and to biomedical areas that focus on the discovery and identification of weak, broad spectrum native fluorescence. © 2006 IEEE.

More Details

Imaging multiple endogenous and exogenous fluorescent species in cells and tissues

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Timlin, Jerilyn A.; Nieman, Linda T.; Jones, Howland D.; Sinclair, Michael B.; Haaland, David M.; Guzowski, John F.

Hyperspectral imaging provides complex image data with spectral information from many fluorescent species contained within the sample such as the fluorescent labels and cellular or pigment autofluorescence. To maximize the utility of this spectral imaging technique it is necessary to couple hyperspectral imaging with sophisticated multivariate analysis methods to extract meaningful relationships from the overlapped spectra. Many commonly employed multivariate analysis techniques require the identity of the emission spectra of each component to be known or pure component pixels within the image, a condition rarely met in biological samples. Multivariate curve resolution (MCR) has proven extremely useful for analyzing hyperspectral and multispectral images of biological specimens because it can operate with little or no a priori information about the emitting species, making it appropriate for interrogating samples containing autofluorescence and unanticipated contaminating fluorescence. To demonstrate the unique ability of our hyperspectral imaging system coupled with MCR analysis techniques we will analyze hyperspectral images of four-color in-situ hybridized rat brain tissue containing 455 spectral pixels from 550 - 850 nm. Even though there were only four colors imparted onto the tissue in this case, analysis revealed seven fluorescent species, including contributions from cellular autofluorescence and the tissue mounting media. Spectral image analysis will be presented along with a detailed discussion of the origin of the fluorescence and specific illustrations of the adverse effects of ignoring these additional fluorescent species in a traditional microscopy experiment and a hyperspectral imaging system.

More Details

Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument

Timlin, Jerilyn A.; Nieman, Linda T.

Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.

More Details
4 Results
4 Results