Publications

9 Results
Skip to search filters

Thermomechanical characterization of thermoset urethane shape-memory polymer foams

Journal of Applied Polymer Science

Domeier, Linda A.; Nissen, April; Goods, Steven H.; Whinnery, LeRoy L.; McElhanon, James

The shape-memory polymer performance of urethane foams compressed under a variety of conditions was characterized. The foams were water-blown thermosets with a closed-cell structure and ranged in density from about 0.25 to 0.75 g/cm3. Compressive deformations were carried out over a range of strain levels, temperatures, and lateral constraints. Recovery stresses measured between fixed platens were as high as 4 MPa. Recovery strains, measured against loads up to 0.13 MPa, demonstrated the effects of various parameters. The results suggest that compression near the foam glass-transition temperature provided optimal performance. Foams with densities of about 0.5 g/cc and compressed 50% provided a useful balance (time, strain, and load) in the recovery performance. © 2009 Wiley Periodicals, Inc.

More Details

Material morphology and electrical resistivity differences in EPDM rubbers

Proposed for publication in the Journal of Applied Polymer Science.

Domeier, Linda A.; Yang, Nancy Y.

Electrical resistance anomalies noted in EPDM gaskets have been attributed to zinc-enriched surface sublayers, about 10-{micro}m thick, in the sulfur cured rubber material. Gasket over-compression provided the necessary connector pin contact and was also found to cause surprising morphological changes on the gasket surfaces. These included distributions of zinc oxide whiskers in high pressure gasket areas and cone-shaped features rich in zinc, oxygen, and sulfur primarily in low pressure protruding gasket areas. Such whiskers and cones were only found on the pin side of the gaskets in contact with a molded plastic surface and not on the back side in contact with an aluminum surface. The mechanisms by which such features are formed have not yet been defined.

More Details

Fabrication and characterization of polymer microfluidic devices for BioAgent detection

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Morales, Alfredo M.; Brazzle, John D.; Crocker, Robert W.; Domeier, Linda A.; Goods, Eric B.; Hachman, John T.; Harnett, Cindy K.; Hunter, Marion C.; Mani, Seethambal S.; Mosier, Bruce P.; Simmons, Blake S.

Sandia and Lawrence Livermore National Laboratories are developing a briefcase-sized, broad-spectrum bioagent detection system. This autonomous instrument, the BioBriefcase, will monitor the environment and warn against bacterium, virus, and toxin based biological attacks. At the heart of this device, inexpensive polymer microfluidic chips will carry out sample preparation and analysis. Fabrication of polymer microfluidic chips involves the creation of a master in etched glass; plating of the master to produce a nickel stamp; large lot chip replication by injection molding; and thermal chip sealing. Since the performance and reliability of microfluidic chips are very sensitive to fluidic impedance and to electromagnetic fluxes, the microchannel dimensions and shape have to be tightly controlled during chip fabrication. In this talk, we will present an overview of chip design and fabrication. Metrology data collected at different fabrication steps and the dimensional deviations of the polymer chip from the original design will be discussed.

More Details
9 Results
9 Results