The Hippogriff camera developed at Sandia National Laboratories as part of the Ultra-Fast X-ray Imager (UXI) program is a high-speed, multi-frame, time-gated imager for use on a wide variety of High Energy Density (HED) physics experiments on both Sandia's Z-Machine and the National Ignition Facility. The camera is a 1024 x 448 pixel array with 25 μm spatial resolution, containing 2 frames per pixel natively and has achieved 2 ns minimum integration time. It is sensitive to both optical photons as well as soft X-rays up to ∼6 keV. The Hippogriff camera is the second generation UXI camera that contains circuitry to trade spatial resolution for additional frames of temporal coverage. The user can reduce the row-wise spatial resolution from the native 25 μm to increase the number of frames in a data set to 4 frames at 50 μm or 8 frames at 100 μm spatial resolution. This feature, along with both optical and X-ray sensitivity, facilitates additional experimental flexibility. Minimum signal is 1500 erms and full well is 1.5 million e-.
The Ultra-Fast X-ray Imager (UXI) program is an ongoing effort at Sandia National Laboratories to create high speed, multi-frame, time gated Read Out Integrated Circuits (ROICs), and a corresponding suite of photodetectors to image a wide variety of High Energy Density (HED) physics experiments on both Sandia's Z-Machine and the National Ignition Facility (NIF). The program is currently fielding a 1024 x 448 prototype camera with 25 μm pixel spatial resolution, 2 frames of in-pixel storage and the possibility of exchanging spatial resolution to achieve 4 or 8 frames of storage. The camera's minimum integration time is 2 ns. Minimum signal target is 1500 e-rms and full well is 1.5 million e-. The design and initial characterization results will be presented as well as a description of future imagers.