Publications

Results 1–25 of 86
Skip to search filters

Maritime Fuel Cell Generator Project [FY2018]

Klebanoff, Leonard E.

Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighboring islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings. Deployment in Hawaii showed the unit needed greater reliability in the start-up sequence, as well as an improved interface to the end-user, thereby presenting opportunities for repairing/upgrading the unit for deployment in another locale. In FY2018, the unit was repaired and upgraded based on the Hawaii experience, and another deployment site was identified for another 6-month deployment of the 100 kW MarFC.

More Details

Maritime Fuel Cell Generator Project [FY2019]

Klebanoff, Leonard E.

The objective of this project is the demonstration, and validation of hydrogen fuel cells in the marine environment. The prototype generator can be used to guide commercial development of a fuel cell generator product. Work includes assessment and validation of the commercial value proposition of both the application and the hydrogen supply infrastructure through third-party hosted deployment as the next step towards widespread use of hydrogen fuel cells in the maritime environment.

More Details

Refueling Infrastructure Scoping and Feasibility Assessment for Hydrogen Rail Applications

Ehrhart, Brian D.; Bran Anleu, Gabriela A.; Mohmand, Jamal A.; Baird, Austin R.; Klebanoff, Leonard E.

The feasibility and component cost of hydrogen rail refueling infrastructure is examined. Example reference stations can inform future studies on components and systems specifically for hydrogen rail refueling facilities. All of the 5 designs considered assumed the bulk storage of liquid hydrogen on-site, from which either gaseous or liquid hydrogen would be dispensed. The first design was estimated to refuel 10 multiple unit trains per day, each train containing 260 kg of gaseous hydrogen at 350 bar on-board. The second base design targeted the refueling of 50 passenger locomotives, each with 400 kg of gaseous hydrogen on-board at 350 bar. Variations from this basic design were made to consider the effect of two different filling times, two different hydrogen compression methods, and two different station design approaches. For each design variation, components were sized, approximate costs were estimated for major components, and physical layouts were created. For both gaseous hydrogen-dispensing base designs, the design of direct-fill using a cryopump design was the lowest cost due to the high cost of the cascade storage system and gas compressor. The last three base designs all assumed that liquid hydrogen was dispensed into tender cars for freight locomotives that required 7,500 kg of liquid hydrogen, and the three different designs assumed that 5, 50, or 200 tender cars were refueled every day. The total component costs are very different for each design, because each design has a very different dispensing capacity. The total component cost for these three designs are driven by the cost of the liquid hydrogen tank; additionally, delivering that much liquid hydrogen to the refueling facility may not be practical. Many of the designs needed the use of multiple evaporators, compressors, and cryopumps operating in parallel to meet required flow rates. In the future, the components identified here can be improved and scaled-up to better fit the needs of heavy-duty refueling facilities. This study provides basic feasibility and first-order design guidance for hydrogen refueling facilities serving emerging rail applications.

More Details

Energy Efficient Computing R&D Roadmap Outline for Automated Vehicles

Aitken, Rob A.; Nakahira, Yorie N.; Strachan, John P.; Bresniker, Kirk B.; Young, Ian Y.; Li, Zhiyong L.; Klebanoff, Leonard E.; Burchard, Carrie L.; Kumar, Suhas K.; Marinella, Matthew J.; Severa, William M.; Talin, A.A.; Vineyard, Craig M.; Mailhiot, Christian M.; Dick, Robert D.; Lu, Wei L.; Mogill, Jace M.

Automated vehicles (AV) hold great promise for improving safety, as well as reducing congestion and emissions. In order to make automated vehicles commercially viable, a reliable and highperformance vehicle-based computing platform that meets ever-increasing computational demands will be key. Given the state of existing digital computing technology, designers will face significant challenges in meeting the needs of highly automated vehicles without exceeding thermal constraints or consuming a large portion of the energy available on vehicles, thus reducing range between charges or refills. The accompanying increases in energy for AV use will place increased demand on energy production and distribution infrastructure, which also motivates increasing computational energy efficiency.

More Details

Progress, Challenges, and Opportunities in the Synthesis, Characterization, and Application of Metal-Boride-Derived Two-Dimensional Nanostructures

ACS Materials Letters

Gunda, Harini; Klebanoff, Leonard E.; Sharma, Peter A.; Varma, Akash K.; Dolia, Varun; Jasuja, Kabeer; Stavila, Vitalie S.

Two-dimensional (2D) metal-boride-derived nanostructures have been a focus of intense research for the past decade, with an emphasis on new synthetic approaches, as well as on the exploration of possible applications in next-generation advanced materials and devices. Their unusual mechanical, electronic, optical, and chemical properties, arising from low dimensionality, present a new paradigm to the science of metal borides that has traditionally focused on their bulk properties. This Perspective discusses the current state of research on metal-boride-derived 2D nanostructures, highlights challenges that must be overcome, and identifies future opportunities to fully utilize their potential.

More Details

Study of Hydrogen Fuel Cell Technology for Freight Rail Propulsion and Review of Relevant Industry Standards

Ehrhart, Brian D.; Klebanoff, Leonard E.; Mohmand, Jamal A.; Markt, Cheri M.

Alternatives to conventional diesel electric propulsion are currently of interest to rail operators. In the U.S., smaller railroads have implemented natural gas and other railroads are exploring hydrogen technology as a cleaner alternative to diesel. Diesel, battery, hydrogen fuel cell, or track electrification all have trade-offs for operations, economics, safety, and public acceptability. A framework to compare different technologies for specific applications is useful to optimize the desired results. Standards from the Association of American Railroads (AAR) and other industry best practices were reviewed for applicability with hydrogen fuel cell technology. Some technical gaps relate to the physical properties of hydrogen, such as embrittlement of metals, invisible flames, and low liquid temperatures. A reassessment of material selection, leak/flame detection, and thermal insulation methods is required. Hydrogen is less dense and diffuses more easily than natural gas, and liquid hydrogen is colder than liquefied natural gas. Different densities between natural gas and hydrogen require modifications to tank designs and flow rates. Leaked hydrogen will rise rather than pool on the ground like diesel, requiring a modification to the location of hydrogen tanks on rolling stock. Finally, the vibration and shock experienced in the rail environment is higher than light-duty vehicles and stationary applications for which current fuel cell technology has been developed, requiring a modification in tank design requirements and testing.

More Details
Results 1–25 of 86
Results 1–25 of 86