Publications

10 Results
Skip to search filters

Classification of Photovoltaic Failures with Hidden Markov Modeling, an Unsupervised Statistical Approach

Energies

Hopwood, Michael H.; Patel, Lekha P.; Gunda, Thushara G.

Failure detection methods are of significant interest for photovoltaic (PV) site operators to help reduce gaps between expected and observed energy generation. Current approaches for field-based fault detection, however, rely on multiple data inputs and can suffer from interpretability issues. In contrast, this work offers an unsupervised statistical approach that leverages hidden Markov models (HMM) to identify failures occurring at PV sites. Using performance index data from 104 sites across the United States, individual PV-HMM models are trained and evaluated for failure detection and transition probabilities. This analysis indicates that the trained PV-HMM models have the highest probability of remaining in their current state (87.1% to 93.5%), whereas the transition probability from normal to failure (6.5%) is lower than the transition from failure to normal (12.9%) states. A comparison of these patterns using both threshold levels and operations and maintenance (O&M) tickets indicate high precision rates of PV-HMMs (median = 82.4%) across all of the sites. Although additional work is needed to assess sensitivities, the PV-HMM methodology demonstrates significant potential for real-time failure detection as well as extensions into predictive maintenance capabilities for PV.

More Details

Local limits of detection for anthropogenic aerosol-cloud interactions

Shand, Lyndsay S.; Larson, Kelsie M.; Staid, Andrea S.; Roesler, Erika L.; Lyons, Donald A.; Simonson, Katherine M.; Patel, Lekha P.; Hickey, James J.; Gray, Skyler D.

Ship tracks are quasi-linear cloud patterns produced from the interaction of ship emissions with low boundary layer clouds. They are visible throughout the diurnal cycle in satellite images from space-borne assets like the Advanced Baseline Imagers (ABI) aboard the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES-R). However, complex atmospheric dynamics often make it difficult to identify and characterize the formation and evolution of tracks. Ship tracks have the potential to increase a cloud's albedo and reduce the impact of global warming. Thus, it is important to study these patterns to better understand the complex atmospheric interactions between aerosols and clouds to improve our climate models, and examine the efficacy of climate interventions, such as marine cloud brightening. Over the course of this 3-year project, we have developed novel data-driven techniques that advance our ability to assess the effects of ship emissions on marine environments and the risks of future marine cloud brightening efforts. The three main innovative technical contributions we will document here are a method to track aerosol injections using optical flow, a stochastic simulation model for track formations and an automated detection algorithm for efficient identification of ship tracks in large datasets.

More Details
10 Results
10 Results