Harsh weather as a conributor to PV degradation and reliability
Abstract not provided.
Abstract not provided.
The objective of the Photovoltaic Collaborative to Advance Multi-climate and Performance Research (PVCAMPER) is to: 1) Build and maintain a multi-climate research platform to enable pioneering photovoltaic research; 2) Validate the performance of emerging technologies in specific climates; 3) Help accelerate the world’s transition to a solar-intensive economy. Our focus in achieving those goals is to foster collaborative research and to build an international organization dedicated to improving data quality, minimizing measurement uncertainty and exchanging best practices related to PV performance.
Journal of Cleaner Production
Land-use conflicts created by the growth of solar photovoltaics (PV) can be mitigated by applying the concept of agrivoltaics, that is, the co-development of land for both PV and agricultural purposes, to commercial-scale solar installations. In this study, we present a conceptual design for a novel agrivoltaic system based on pasture-fed rabbit farming and provide the technical, environmental and economic analyses to demonstrate the viability of the concept. Included in our analysis are the economic advantages to the PV operator of grazing rabbits at a density sufficient to control vegetative growth, thus reducing the economic and environmental costs of mowing; the dual-revenue stream from the sale of both rabbits and electricity, contrasted with estimates of the capital-investment costs for rabbits co-located with, and also independent of, PV; and the economic value to the rabbit farmer of higher colony-growth rates (made possible by the shading and predator protection provided by the PV arrays and of reduced fencing costs, which are the largest capital cost, by being able to leverage the PV systems for rabbit fencing. We also provide an environmental analysis that suggests that rabbit-PV farming is a pathway to a measurable reduction in agriculturally-generated greenhouse-gas emissions. Our calculations indicate that the co-location of solar and rabbit farms is a viable form of agrivoltaics, increasing overall site revenue by 2.5%–24.0% above projected electricity revenue depending on location and rental/ownership of rabbits, while providing a high-value agricultural product that, on a per weight basis, has significantly less environmental impact than cattle.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
This paper presents the methodology and preliminary results from a global study on solar over-irradiance events, which are more frequent than previously believed and can negatively impact utility-scale PV operations. Data from five test sites in Florianópolis and Brotas de Macaúbas in Brazil, Bernburg in Germany, Albuquerque, in the USA and Loughborough, in the United Kingdom are presented and analyzed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Record of the IEEE Photovoltaic Specialists Conference
Energy losses due to snow coverage can be high in climates with large annual snowfall. These losses may be reduced with region-specific system design guidelines. One possible factor in snow retention on PV systems could be frame presence and/or shape. Sandia is studying the effect of module frame presence on photovoltaic module snow shedding for a pair of otherwise-identical PV systems in Vermont. The results of this study provide a summary of the findings after the 2018-2019 winter period. The results clearly show that the presence of a frame inhibits PV performance in mild winter conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The U.S. DOE Regional Test Center for Solar Technologies program was established to validate photovoltaic (PV) technologies installed in a range of different climates. The program is funded by the Energy Department's SunShot Initiative. The initiative seeks to make solar energy cost competitive with other forms of electricity by the end of the decade. Sandia National Laboratory currently manages four different sites across the country. The National Renewable Energy Laboratory manages a fifth site in Colorado. The entire PV portfolio currently includes 20 industry partners and almost 500 kW of installed systems. The program follows a defined process that outlines tasks, milestones, agreements, and deliverables. The process is broken out into four main parts: 1) planning and design, 2) installation, 3) operations, and 4) decommissioning. This operations manual defines the various elements of each part.
This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorld 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.
Abstract not provided.
A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced one year of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the twelve-month period ranging from 17% to 132%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism Solar. The most dramatic increase in performance was seen among the vertically mounted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules in the same orientation. Because peak energy generation (mid- morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.
Electricity Journal
Abstract not provided.
The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.
A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).
Abstract not provided.
Abstract not provided.
Abstract not provided.
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Total lifetime costs of photovoltaic (PV) systems are important determinants of profitability. But such costs are not always accurately measured and compared against fluctuating electricity costs, which can be an important contributor to longterm profitability. In this paper, we consider the economics of concentrated photovoltaics (CPV), which offer significantly higher efficiency and greater energy production over traditional fixed flat-plate PV installations in high-irradiance regions, but are perceived to be risky investments. Working with two models, one a simple annual model that uses only direct normal solar insolation; the other a more complex hourly model that uses direct normal solar insolation, ambient temperature, and wind speed to predict energy yield, we calculated the energy production and corresponding revenue generation for a 28 kW CPV unit and a comparable single-axis tracker field in Nevada. Our resulting cost matrix shows how much revenue a CPV system can reasonably be expected to generate under different pricing schemes and time periods. While the values vary depending on the assumptions made, the matrix provides an index of profitability, enabling prospective buyers to compare the costs of purchasing, installing and maintaining a system against likely revenue. As a result of our calculations, we anticipate that CPV systems will still be viable in high flux areas because they offer the promise of profitability now and continued or increased profitability as cell costs decrease and/or overall efficiency increases. Nonetheless, other factors, such as long-term reliability and O&M costs, must be addressed if CPV is to compete with other simpler technologies, such as single-axis PV trackers, which have lower upfront costs and are therefore becoming more attractive to potential customers.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Procedia Manufacturing
Electric distribution utilities, the companies that feed electricity to end users, are overseeing a technological transformation of their networks, installing sensors and other automated equipment, that are fundamentally changing the way the grid operates. These grid modernization efforts will allow utilities to incorporate some of the newer technology available to the home user – such as solar panels and electric cars – which will result in a bi-directional flow of energy and information. How will this new flow of information affect control room operations? How will the increased automation associated with smart grid technologies influence control room operators’ decisions? And how will changes in control room operations and operator decision making impact grid resilience? These questions have not been thoroughly studied, despite the enormous changes that are taking place. In this study, which involved collaborating with utility companies in the state of Vermont, the authors proposed to advance the science of control-room decision making by understanding the impact of distribution grid modernization on operator performance. Distribution control room operators were interviewed to understand daily tasks and decisions and to gain an understanding of how these impending changes will impact control room operations. Situation awareness was found to be a major contributor to successful control room operations. However, the impact of growing levels of automation due to smart grid technology on operators’ situation awareness is not well understood. Future work includes performing a naturalistic field study in which operator situation awareness will be measured in real-time during normal operations and correlated with the technological changes that are underway. The results of this future study will inform tools and strategies that will help system operators adapt to a changing grid, respond to critical incidents and maintain critical performance skills.