Publications

66 Results
Skip to search filters

On-Line Waste Library V4.0 Supporting Information

Price, Laura L.

The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.

More Details

Results of Re-evaluation of FEPs Related to Implementing the ABD Glass Program

Price, Laura L.; Alsaed, Halim A.; Prouty, Jeralyn L.; Rogers, Ralph D.; Ebert, William E.; Hadgu, Teklu H.; Mariner, Paul M.

More Details

Annual Status Update for OWL

Weck, Philippe F.; Fluke, Nichole L.; Padilla, Mekalah P.; Price, Laura L.; Prouty, Jeralyn L.; Rogers, Ralph D.; Sassani, David C.; Walkow, Walter M.

This report represents completion of milestone deliverable M2SF-22SN010309082 Annual Status Update for OWL, which is due on November 30, 2021 as part of the fiscal year 2022 (FY2022) work package SF-22SN01030908. This report provides an annual update on status of FY2021 activities for the work package “OWL - Inventory – SNL”. The Online Waste Library (OWL) has been designed to contain information regarding United States (U.S.) Department of Energy (DOE)-managed (as) high-level waste (DHLW), DOE-managed spent nuclear fuel (DSNF), and other wastes that are likely candidates for deep geologic disposal. Links to the current supporting documents for the data are provided when possible; however, no classified or official-use-only (OUO) data are planned to be included in OWL. There may be up to several hundred different DOE-managed wastes that are likely to require deep geologic disposal. This report contains new information on sodium-bonded spent fuel waste types and wastes forms, which are included in the next release of OWL, Version 3.0, on the Sandia National Laboratories (SNL) External Collaboration Network (ECN). The report also provides an update on the effort to include information regarding the types of vessels capable of disposing of DOE-managed waste.

More Details

Repository-Scale Performance Assessment Incorporating Postclosure Criticality

Price, Laura L.; Salazar, Alex S.; Basurto, Eduardo B.; Alsaed, Halim A.; Cardoni, Jeffrey N.; Nole, Michael A.; Prouty, Jeralyn L.; Sanders, Charlotta S.; Davidson, Greg D.; Swinney, Mathew S.; Bhatt, Santosh B.; Gonzalez, Evan G.; B., Kiedrowski.B.

A key objective of the United States Department of Energy’s (DOE) Office of Nuclear Energy’s Spent Fuel and Waste Science and Technology Campaign is to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the United States has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act of 1982, as amended). Any repository licensed to dispose of SNF must meet requirements regarding the long-term performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration during the postclosure period. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently licensed and being used to store and transport SNF but were not designed for permanent geologic disposal. A study has been initiated to examine the potential consequences, with respect to long-term repository performance, of criticality events that might occur during the postclosure period in a hypothetical repository containing DPCs. The first phase (a scoping phase) consisted of developing an approach to creating the modeling tools and techniques that may eventually be needed to either include or exclude criticality from a performance assessment (PA) as appropriate; this scoping phase is documented in Price et al. (2019a). In the second phase, that modeling approach was implemented and future work was identified, as documented in Price et al. (2019b). This report gives the results of a repository-scale PA examining the potential consequences of postclosure criticality, as well as the information, modeling tools, and techniques needed to incorporate the effects of postclosure criticality in the PA.

More Details

Integration of the Back End of the Nuclear Fuel Cycle

Freeze, Geoffrey A.; Bonano, Evaristo J.; Swift, Peter S.; Kalinina, Elena A.; Hardin, Ernest H.; Price, Laura L.; Durbin, S.G.; Rechard, Robert P.; Gupta, Kuhika G.

Management of spent nuclear fuel and high-level radioactive waste consists of three main phases – storage, transportation, and disposal – commonly referred to as the back end of the nuclear fuel cycle. Current practice for commercial spent nuclear fuel management in the United States (US) includes temporary storage of spent fuel in both pools and dry storage systems at operating or shutdown nuclear power plants. Storage pools are filling to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler spent fuel from pools into dry storage. Unless a repository becomes available that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 136,000 metric tons of spent fuel in dry storage systems by mid-century, when the last plants in the current reactor fleet are decommissioned. Current designs for dry storage systems rely on large multi-assembly canisters, the most common of which are so-called “dual-purpose canisters” (DPCs). DPCs are certified for both storage and transportation, but are not designed or licensed for permanent disposal. The large capacity (greater number of spent fuel assemblies) of these canisters can lead to higher canister temperatures, which can delay transportation and/or complicate disposal. This current management practice, in which the utilities continue loading an ever-increasing inventory of larger DPCs, does not emphasize integration among storage, transportation, and disposal. This lack of integration does not cause safety issues, but it does lead to a suboptimal system that increases costs, complicates storage and transportation operations, and limits options for permanent disposal. This paper describes strategies for improving integration of management practices in the US across the entire back end of the nuclear fuel cycle. The complex interactions between storage, transportation, and disposal make a single optimal solution unlikely. However, efforts to integrate various phases of nuclear waste management can have the greatest impact if they begin promptly and continue to evolve throughout the remaining life of the current fuel cycle. A key factor that influences the path forward for integration of nuclear waste management practices is the identification of the timing and location for a repository. The most cost-effective path forward would be to open a repository by mid-century with the capability to directly dispose of DPCs without repackaging the spent fuel into disposalready canisters. Options that involve repackaging of spent fuel from DPCs into disposalready canisters or that delay the repository opening significantly beyond mid-century could add 10s of billions of dollars to the total system life cycle cost.

More Details

On-line Waste Library Supporting Information

Price, Laura L.

The On-Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.

More Details

OWL and Waste Form Characteristics (Annual Status Update)

Weck, Philippe F.; Brady, Patrick V.; Criscenti, Louise C.; Fluke, Nichole L.; Gelbard, Fred G.; Padilla, Mekalah P.; Price, Laura L.; Prouty, Jeralyn L.; Rechard, Robert P.; Rigali, Mark J.; Rogers, Ralph D.; Sanchez, Amanda C.; Sassani, David C.; Tillman, Jackie B.; Walkow, Walter M.

This report represents completion of milestone deliverable M2SF-21SN010309012 “Annual Status Update for OWL and Waste Form Characteristics” that provides an annual update on status of fiscal year (FY 2020) activities for the work package SF-20SN01030901 and is due on January 29, 2021. The Online Waste Library (OWL) has been designed to contain information regarding United States (U.S.) Department of Energy (DOE)-managed (as) high-level waste (DHLW), spent nuclear fuel (SNF), and other wastes that are likely candidates for deep geologic disposal, with links to the current supporting documents for the data (when possible; note that no classified or official-use-only (OUO) data are planned to be included in OWL). There may be up to several hundred different DOE-managed wastes that are likely to require deep geologic disposal. This draft report contains versions of the OWL model architecture for vessel information (Appendix A) and an excerpt from the OWL User’s Guide (Appendix B and SNL 2020), which are for the current OWL Version 2.0 on the Sandia External Collaboration Network (ECN).

More Details

OWL Change Control Process

Weck, Philippe F.; Fluke, Nichole L.; Price, Laura L.; Prouty, Jeralyn L.; Rogers, Ralph D.; Sassani, David C.; Walkow, Walter M.

The Online Waste Library (OWL) provides a consolidated source of information on Department of Energy-managed radioactive waste likely to require deep geologic disposal. With the release of OWL Version 1.0 in fiscal year 2019 (FY2019), much of the FY2020 work involved developing the OWL change control process and the OWL release process. These two processes (in draft form) were put into use for OWL Version 2.0, which was released in early FY2021. With the knowledge gained, the OWL team refined and documented the two processes in two separate reports. This report focuses on the change control process and discusses the following: (1) definitions and system components; (2) roles and responsibilities; (3) origin of changes; (4) the change control process including the Change List, Task List, activity categories, implementation examples, and checking and review; and (5) the role of the re lease process in ensuring changes in the Change List are incorporated into a public release.

More Details

OWL Release Process

Weck, Philippe F.; Fluke, Nichole L.; Price, Laura L.; Prouty, Jeralyn L.; Rogers, Ralph D.; Sassani, David C.; Tillman, Jackie B.; Walkow, Walter M.

The Online Waste Library (OWL) provides one consolidated source of information on Department of Energy-managed wastes likely to require deep geologic disposal. With the release of OWL Version 1.0 in fiscal year (FY) 2019, much of the FY2020 work involved developing the OWL change control process and the OWL release process. These two processes (in draft form) were put into use for OWL Version 2.0, which was released in early FY2021. With the knowledge gained, the OWL team refined and documented the two processes in two separate reports. This report addresses the release process starting with a definition of release management in Section 2. Section 3 describes the Information Technology Infrastructure Library (ITIL) framework, part of which includes the three different environments used for release management. Section 4 presents the OWL components existing in the different environments and provides details on the release schedule and procedures.

More Details

Preliminary Analysis of Postclosure DPC Criticality Consequences

Price, Laura L.; Alsaed, Halim A.; Barela, Amanda C.; Brady, Patrick V.; Gelbard, Fred G.; Gross, Mike G.; Nole, Michael A.; Prouty, Jeralyn L.; Banerjee, Kaushik B.; Bhatt, S.B.; Davidson, Greg D.; Fang, Zheng F.; Howard, Rob H.; Johnson, S J.; Painter, Scott P.; Swinney, Mathew S.; Gonzalez, Evan G.

One of the objectives of the United States (U.S.) Department of Energy's (DOE) Office of Nuclear Energy's Spent Fuel and Waste Science and Technology Campaign is to better understand the technical basis, risks, and uncertainty associated with the safe and secure disposition of spent nuclear fuel (SNF) and high-level radioactive waste. Commercial nuclear power generation in the U.S. has resulted in thousands of metric tons of SNF, the disposal of which is the responsibility of the DOE (Nuclear Waste Policy Act 1982). Any repository licensed to dispose the SNF must meet requirements regarding the longterm performance of that repository. For an evaluation of the long-term performance of the repository, one of the events that may need to be considered is the SNF achieving a critical configuration. Of particular interest is the potential behavior of SNF in dual-purpose canisters (DPCs), which are currently being used to store and transport SNF but were not designed for permanent geologic disposal. A two-phase study has been initiated to begin examining the potential consequences, with respect to longterm repository performance, of criticality events that might occur during the postclosure period in a hypothetical repository containing DPCs. Phase I, a scoping phase, consisted of developing an approach intended to be a starting point for the development of the modeling tools and techniques that may eventually be required either to exclude criticality from or to include criticality in a performance assessment (PA) as appropriate; Phase I is documented in Price et al. (2019). The Phase I approach guided the analyses and simulations done in Phase II to further the development of these modeling tools and techniques as well as the overall knowledge base. The purpose of this report is to document the results of the analyses conducted during Phase II. The remainder of Section 1 presents the background, objective, and scope of this report, as well as the relevant key assumptions used in the Phase II analyses and simulations. Subsequent sections discuss the analyses that were conducted (Section 2), the results of those analyses (Section 3), and the summary and conclusions (Section 4). This report fulfills the Spent Fuel and Waste Science and Technology Campaign deliverable M2SF-20SN010305061.

More Details

On-Line Waste Library Supporting Information

Price, Laura L.

The On - Line Waste Library is a website that contains information regarding United States Department of Energy-managed high-level waste, spent nuclear fuel, and other wastes that are likely candidates for deep geologic disposal, with links to supporting documents for the data. This report provides supporting information for the data for which an already published source was not available.

More Details

Analysis of Solutions for the Geologic Disposal of Dual-Purpose Canisters

Hardin, Ernest H.; Kessler, John K.; Price, Laura L.; Rigali, Mark J.; Banerjee, Kaushik B.; Alsaed, Abdelhalim A.; Carter, Joe C.

Commercial spent nuclear fuel (SNF) is accumulating at 72 sites across the U.S., at the rate of about 2,000 metric tons of uranium (MTU) per year. There are currently more than 2,700 dualpurpose canisters (DPCs) loaded with SNF, which are designed for storage and transportation but not disposal. If current storage practices continue, about half the eventual total U.S. SNF inventory will be in about 5,500 dry storage systems by 2035, with the entire inventory stored in 10,000 or more by 2060. The quantity of SNF in DPCs is now much greater than that anticipated in the past, leading the DOE to investigate the technical feasibility of direct disposal of SNF in DPCs. Studies in 2013-2015 concluded that the main technical challenges for disposal of SNF in DPCs are thermal management, handling and emplacement of large, heavy waste packages, and postclosure criticality control (Hardin et al. 2015). Of these, postclosure criticality control is the most challenging, and the R&D needed for this aspect of DPC direct disposal is the primary focus of this report.

More Details

Online Waste Library (OWL) and Waste Forms Characteristics Annual Report

Sassani, David C.; Brady, Patrick V.; Criscenti, Louise C.; Fluke, Nichole L.; Gelbard, Fred G.; Padilla, Mekalah P.; Price, Laura L.; Prouty, Jeralyn L.; Rechard, Robert P.; Rigali, Mark J.; Rogers, Ralph D.; Hernandez-Sanchez, Bernadette A.; Tillman, Jackie B.; Walkow, Walter M.; Weck, Philippe F.

This report represents completion of milestone deliverable M2SF-19SNO10309013 "Online Waste Library (OWL) and Waste Forms Characteristics Annual Report" that reports annual status on fiscal year (FY) 2019 activities for the work package SF-19SN01030901 and is due on August 2, 2019. The online waste library (OWL) has been designed to contain information regarding United States (U.S.) Department of Energy (DOE)-managed (as) high-level waste (DHLW), spent nuclear fuel (SNF), and other wastes that are likely candidates for deep geologic disposal, with links to the current supporting documents for the data (when possible; note that no classified or official-use-only (OUO) data are planned to be included in OWL). There may be up to several hundred different DOE-managed wastes that are likely to require deep geologic disposal. This annual report on FY2019 activities includes evaluations of waste form characteristics and waste form performance models, updates to the OWL development, and descriptions of the management processes for the OWL. Updates to the OWL include an updated user's guide, additions to the OWL database content for wastes and waste forms, results of the beta testing and changes implemented from it. Also added are descriptions of the management/control processes for the OWL development, version control, and archiving. These processes have been implemented as part of the full production release of OWL (i.e., OWL Version 1.0), which has been developed on, and will be hosted and managed on, Sandia National Laboratories (SNL) systems. The version control/update processes will be implemented for updates to the OWL in the future. Additionally, another process covering methods for interfacing with the DOE SNF Database (DOE 2007) at Idaho National Laboratory on the numerous entries for DOE-managed SNF (DSNF) has been pushed forward by defining data exchanges and is planned to be implemented sometime in FY2020. The INL database is also sometimes referred to as the Spent Fuel Database or the SFDB, which is the acronym that will be used in this report. Once fully implemented, this integration effort will serve as a template for interfacing with additional databases throughout the DOE complex.

More Details

Inventory and Waste Characterization Status Report and OWL Update

Sassani, David C.; Brady, Patrick V.; Gelbard, Fred G.; Price, Laura L.; Prouty, Jeralyn L.; Rechard, Robert P.; Rigali, Mark J.; Rogers, Ralph D.; Sanchez, Amanda C.; Walkow, Walter M.; Weck, Philippe F.

This report represents completion of milestone deliverable M2SF-18SNO10309013 "Inventory and Waste Characterization Status Report and OWL Update that reports on FY2018 activities for the work package (WP) SF-18SNO1030901. This report provides the detailed final information for completed FY2018 work activities for WP SF-18SN01030901, and a summary of priorities for FY2019. This status report on FY2018 activities includes evaluations of waste form characteristics and waste form performance models, updates to the OWL development, and descriptions of the two planned management processes for the OWL. Updates to the OWL include an updated user's guide, additions to the OWL database content for wastes and waste forms, results of the Beta testing and changes implemented from it. There are two processes being planned in FY2018, which will be implemented in FY2019. One process covers methods for interfacing with the DOE SNF DB (DOE 2007) at INL on the numerous entries for DOE managed SNF, and the other process covers the management of updates to, and version control/archiving of, the OWL database. In FY2018, we have pursued three studies to evaluate/redefine waste form characteristics and/or performance models. First characteristic isotopic ratios for various waste forms included in postclosure performance studies are being evaluated to delineate isotope ratio tags that quantitatively identify each particular waste form. This evaluation arose due to questions regarding the relative contributions of radionuclides from disparate waste forms in GDSA results, particularly, radionuclide contributions of DOE-managed SNF vs HLW glass. In our second study we are evaluating the bases of glass waste degradation rate models to the HIP calcine waste form. The HIP calcine may likely be a ceramic matrix material, with multiple ceramic phases with/without a glass phase. The ceramic phases are likely to have different degradation performance from the glass portion. The distribution of radionuclides among those various phases may also be a factor in the radionuclide release rates. Additionally, we have an ongoing investigation of the performance behavior of TRISO particle fuels and are developing a stochastic model for the degradation of those fuels that accounts for simultaneous corrosion of the silicon carbide (SiC) layer and radionuclide diffusion through it. The detailed model of the TRISO particles themselves, will be merged with models of the degradation behavior(s) of the graphite matrix (either prismatic compacts or spherical "pebbles") containing the particles and the hexagonal graphite elements holding the compacts.

More Details

Inventory and Waste Characterization Status Report

Sassani, David C.; Price, Laura L.; Rechard, Robert P.; Rogers, Ralph D.; Walkow, Walter M.; Johnson, Ava J.; Sanchez, Amanda C.; Mariner, Paul M.; Rigali, Mark J.; Stein, Emily S.; Weck, Philippe F.

This report provides an update to Sassani et al. (2016) and includes: (1) an updated set of inputs (Sections 2.3) on various additional waste forms (WF) covering both DOE-managed spent nuclear fuel (SNF) and DOE-managed (as) high-level waste (HLW) for use in the inventory represented in the geologic disposal safety analyses (GDSA); (2) summaries of evaluations initiated to refine specific characteristics of particular WF for future use (Section 2.4); (3) updated development status of the Online Waste Library (OWL) database (Section 3.1.2) and an updated user guide to OWL (Section 3.1.3); and (4) status updates (Section 3.2) for the OWL inventory content, data entry checking process, and external OWL BETA testing initiated in fiscal year 2017.

More Details

Deep Borehole Disposal Safety Analysis

Freeze, Geoffrey A.; Stein, Emily S.; Price, Laura L.; MacKinnon, R.J.; Tillman, Jackie B.

This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

More Details

The On-line Waste Library (OWL): Usage and Inventory Status Report

Sassani, David C.; Jang, Jay J.; Mariner, Paul M.; Price, Laura L.; Rechard, Robert P.; Rigali, Mark J.; Rogers, Ralph R.; Stein, Emily S.; Walkow, Walter M.; Weck, Philippe F.

The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin). A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.

More Details

Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

Price, Laura L.; Barela, Amanda C.; Schetnan, Richard R.; Walkow, Walter M.

The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

More Details

Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

Rigali, Mark J.; Price, Laura L.

This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth of about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.

More Details

Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog

Price, Laura L.; Barela, Amanda C.; Walkow, Walter M.; Schetnan, Richard R.; Arnold, Matthew B.

An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

More Details

Nuclear Fuel Cycle Options Catalog FY15 Improvements and Additions

Price, Laura L.; Barela, Amanda C.; Schetnan, Richard R.; Walkow, Walter M.

The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2015 fiscal year.

More Details

Groundwork for Universal Canister System Development

Price, Laura L.; Gross, Mike G.; Prouty, Jeralyn L.; Rigali, Mark J.; Craig, Brian C.; Han, Zenghu H.; Lee, John H.; Liu, Yung L.; Pope, Ron P.; Connolly, Kevin C.; Feldman, Matt F.; Jarrell, Josh J.; Radulescu, Georgeta R.; Scaglione, John S.; Wells, Alan W.

The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used for handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.

More Details

Integrating management of spent nuclear fuel in the United States by consolidating storage

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Rechard, Robert P.; Price, Laura L.; Kalinina, Elena A.; Bonano, Evaristo J.; Jenkins-Smith, Hank C.

The theme of the paper is that consolidated interim storage can provide an important integrating function between storage and disposal in the United States. Given the historical tension between consolidated interim storage and disposal in the United States, this paper articulates a rationale for consolidated interim storage. However, the paper concludes more effort could be expended on developing the societal aspects of the rationale, in addition to the technical and operational aspects of using consolidated interim storage.

More Details

Qualitative evaluation of options for disposal of SNF and HLW

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Price, Laura L.; Sassani, David C.; Swift, Peter N.; Bonano, Evaristo J.

Options for disposal of the spent nuclear fuel and high level radioactive waste that are projected to exist in the United States in 2048 were studied. The options included four different disposal concepts: mined repositories in salt, clay/shale rocks, and crystalline rocks; and deep boreholes in crystalline rocks. Some of the results of this study are that all waste forms, with the exception of untreated sodium-bonded spent nuclear fuel, can be disposed of in any of the mined disposal concepts, although with varying degrees of confidence; salt allows for more flexibility in managing high-heat waste in mined repositories than other media; small waste forms are potentially attractive candidates for deep borehole disposal; and disposal of commercial SNF in existing dual-purpose canisters is potentially feasible but could pose significant challenges both in repository operations and in demonstrating confidence in long-term performance. Questions addressed by this study include: is a " 'one-size-fits-all ' repository a good strategic option for disposal?" and "do some disposal concepts perform significantly better with or without specific waste types or forms? " The study provides the bases for answering these questions by evaluating potential impacts of waste forms on the feasibility and performance of representative generic concepts for geologic disposal.

More Details
66 Results
66 Results