This report examines the localization of high frequency electromagnetic fields in general three-dimensional cavities along periodic paths between opposing sides of the cavity. The focus is on the case where the mirrors at the ends of the orbit are concave and have two different radii of curvature. The cases where these orbits lead to unstable localized modes are known as scars. The ellipsoidal coordinate system is utilized in the construction of the scarred modes. The field at the interior foci is examined as well as trigonometric projections along the periodic scarred ray path.
This report examines the problem of magnetic penetration of a conductive layer, including nonlinear ferromagnetic layers, excited by an electric current filament. The electric current filament is, for example, a nearby wire excited by a lightning strike. The internal electric field and external magnetic field are determined. Numerical results are compared to various analytical approximations to help understand the physics involved in the penetration.
Capacitance/inductance corrections for grid induced errors for a thin slot models are given for both one and four point testing on a rectangular grid for surface currents surrounding the slot. In addition a formula for translating from one equivalent radius to another is given for the thin-slot transmission line model. Additional formulas useful for this slot modeling are also given.
An iteration method is introduced to obtain the asymptotic form of the impedance per unit length of a rectangular conductor when the half side lengths are large compared to the skin depth. The first terms of the asymptotic expansion are extracted in closed form. The manner in which the corner corrections fit into the expansion are illustrated. The asymptotic results are compared to a numerical solution in the square limit. The odd corner correction for a right angle edge is also discussed.
A method used to solve the problem of water waves on a sloping beach is applied to a thin conducting half plane described by a thin layer impedance boundary condition. The solution for the electric field behavior near the edge is obtained and a simple fit for this behavior is given. This field is used to determine the correction to the impedance per unit length of a conductor due to a sharp edge. The results are applied to the strip conductor. The final appendix also discusses the solution to the dual-sided (impedance surface & perfect conductor surface) half plane problem.
We provide corrections to the slot capacitance and inverse inductance per unit length for slot gasket groove geometries using an approximate conformal mapping approach. We also provide corrections for abrupt step changes in slot width along with boundary discontinuity conditions for implementation in the various slot models.
This report examines the localization of high frequency electromagnetic fields in general three-dimensional convex walled cavities along periodic paths between opposing sides of the cavity. The report examines the three-dimensional case where the mirrors at the end of the orbit have two different radii of curvature. The cases where these orbits lead to unstable localized modes are known as scars.
Using the power balance method we estimate the maximum electric field on a conducting wall of a cavity containing an interior structure supporting eccentric coaxial modes in the frequency regime where the resonant modes are isolated from each other.
We examine coupling into azimuthal slots on an infinite cylinder with a infinite length interior cavity operating both at the fundamental cavity modal frequencies, with small slots and a resonant slot, as well as higher frequencies. The coupling model considers both radiation on an infinite cylindrical exterior as well as a half space approximation. Bounding calculations based on maximum slot power reception and interior power balance are also discussed in detail and compared with the prior calculations. For higher frequencies limitations on matching are imposed by restricting the loads ability to shift the slot operation to the nearest slot resonance; this is done in combination with maximizing the power reception as a function of angle of incidence. Finally, slot power mismatch based on limited cavity load quality factor is considered below the first slot resonance.
A resonant cavity undergoes three distinct behaviors with increasing frequency: 1) fundamental modes, localized in frequency with well defined modal distribution; 2) undermoded region, where modes are still separated, but are sufficiently perturbed by small imperfections that their spectral positions (and distributions) are statistical in nature; and 3) overmoded region, where modes overlap, field distributions follow stochastic distributions, and the slot acts as if in free space. Understanding the penetration through slots in the overmoded region is of great interest, and is the focus of this article. Since full-wave solvers may not be able to provide a timely answer for very high frequencies due to a lack of memory and/or computation resources, we develop bounding methods to estimate worst-case average and maximum fields within the cavity. After discussing the bounding formulation, we compare its results to full-wave simulations at the first, second, and third resonance supported by the slot in the case of a cylindrical cavity. Note that the bounding formulation indicates that results are nearly independent of cavity shape: only the cavity volume, frequency, and cavity quality factor affect the overmoded region, making this formulation a powerful tool to assess electromagnetic interference and electromagnetic compatibility effects within cavities.
High-quality factor resonant cavities are challenging structures to model in electromagnetics owing to their large sensitivity to minute parameter changes. Therefore, uncertainty quantification (UQ) strategies are pivotal to understanding key parameters affecting the cavity response. We discuss here some of these strategies focusing on shielding effectiveness (SE) properties of a canonical slotted cylindrical cavity that will be used to develop credibility evidence in support of predictions made using computational simulations for this application.
We analyze the coupling into a slotted cylindrical cavity operating at fundamental cavity modal frequencies overlapping with the slot’s first resonance frequency through an unmatched formulation that accounts for the slot’s absorption and radiation processes. The model is validated through full-wave simulations and experimental data. We then couple the unmatched formulation to a perturbation theory model to investigate an absorber within the cavity to reduce the interior field strength, also validated with full-wave simulations and experiments. These models are pivotal to understanding the physical processes involved in the electromagnetic penetration through slots, and may constitute design tools to mitigate electromagnetic interference effects within cavities.
Sandia National Laboratories sponsored a three-year internally funded Laboratory Directed Research and Development (LDRD) effort to investigate the vulnerabilities and mitigations of a high-altitude electromagnetic pulse (HEMP) on the electric power grid. The research was focused on understanding the vulnerabilities and potential mitigations for components and systems at the high voltage transmission level. Results from the research included a broad array of subtopics, covered in twenty-three reports and papers, and which are highlighted in this executive summary report. These subtopics include high altitude electromagnetic pulse (HEMP) characterization, HEMP coupling analysis, system-wide effects, and mitigating technologies.
In a transmission line, the coupling between a line and a tower above ground is evaluated when the excitation is an E1 high-altitude electromagnetic pulse (HEMP). The model focuses on capturing correctly the effect of the coupling on the peak of the HEMP induced current that propagates along the line. This assessment is necessary to accurately estimate the effect of the excitation on the systems and components of the power grid. This analysis is a step towards a quantitative evaluation of HEMP excitation on the power grid. The results obtained indicate that the effect can be significant, especially for lines heights of 20 meters or more.
In this article, we examine the coupling into an electrically short azimuthal slot on a cylindrical cavity operating at fundamental cavity modal frequencies. We first develop a matched bound formulation through which we can gather information for maximum achievable levels of interior cavity fields. Actual field levels are below this matched bound; therefore, we also develop an unmatched formulation for frequencies below the slot resonance to achieve a better insight on the physics of this coupling. Good agreement is observed between the unmatched formulation, full-wave simulations, and experimental data, providing a validation of our analytical models. We then extend the unmatched formulation to treat an array of slots, found again in good agreement with full-wave simulations. These analytical models can be used to investigate ways to mitigate electromagnetic interference and electromagnetic compatibility effects within cavities.
We describe here diffusion models apt to construct a multipole-based, cable braid time domain model for conducting wires. Implementation details of both a ladder network valid for time-domain signals with all frequency content and an approximate single-stage circuit valid for low-frequency dominated time signals (such as electromagnetic pulses) are reported. This time domain model can be leveraged to treat system-generated electromagnetic pulse events, as well as used to further confirm the correctness of the multipole-based, cable braid frequency domain model.
We summarize the narrow slot algorithms, including the thick electrically small depth case, conductive gaskets, the deep general depth case, multiple fasteners along the length, and finally varying slot width.
Placing microwave absorbing materials into a high-quality factor resonant cavity may in general reduce the large interior electromagnetic fields excited under external illumination. In this paper, we aim to combine two analytical models we previously developed: 1) an unmatched formulation for frequencies below the slot resonance to model shielding effectiveness versus frequency; and 2) a perturbation model approach to estimate the quality factor of cavities in the presence of absorbers. The resulting model realizes a toolkit with which design guidelines of the absorber’s properties and location can be optimized over a frequency band. Analytic predictions of shielding effectiveness for three transverse magnetic modes for various locations of the absorber placed on the inside cavity wall show good agreement with both full-wave simulations and experiments, and validate the proposed model. This analysis opens new avenues for specialized ways to mitigate harmful fields within cavities.
The goal of this paper is to present, for the first time, calculations of the magnetic penetration case of a first principles multipole-based cable braid electromagnetic penetration model. As a first test case, a one-dimensional array of perfect electrically conducting wires, for which an analytical solution is known, is investigated: We compare both the self-inductance and the transfer inductance results from our first principles cable braid electromagnetic penetration model to those obtained using the analytical solution. These results are found in good agreement up to a radius to half spacing ratio of about 0.78, demonstrating a robustness needed for many commercial and non-commercial cables. We then analyze a second set of test cases of a square array of wires whose solution is the same as the one-dimensional array result and of a rhomboidal array whose solution can be estimated from Kley’s model. As a final test case, we consider two layers of one-dimensional arrays of wires to investigate porpoising effects analytically. We find good agreement with analytical and Kley’s results for these geometries, verifying our proposed multipole model. Note that only our multipole model accounts for the full dependence on the actual cable geometry which enables us to model more complicated cable geometries.
Use of insensitive high explosives (IHEs) has significantly improved ammunition safety because of their remarkable insensitivity to violent cook-off, shock and impact. Triamino-trinitrobenzene (TATB) is the IHE used in many modern munitions. Previously, lightning simulations in different test configurations have shown that the required detonation threshold for standard density TATB at ambient and elevated temperatures (250 C) has a sufficient margin over the shock caused by an arc from the most severe lightning. In this paper, the Braginskii model with Lee-More channel conductivity prescription is used to demonstrate how electrical arcs from lightning could cause detonation in TATB. The steep rise and slow decay in typical lightning pulse are used in demonstrating that the shock pressure from an electrical arc, after reaching the peak, falls off faster than the inverse of the arc radius. For detonation to occur, two necessary detonation conditions must be met: the Pop-Plot criterion and minimum spot size requirement. The relevant Pop-Plot for TATB at 250 C was converted into an empirical detonation criterion, which is applicable to explosives subject to shocks of variable pressure. The arc cross-section was required to meet the minimum detonation spot size reported in the literature. One caveat is that when the shock pressure exceeds the detonation pressure the Pop-Plot may not be applicable, and the minimum spot size requirement may be smaller.
Electromagnetic shields are usually employed to protect cables and other devices; however, these are generally not perfect, and may permit external magnetic and electric fields to penetrate into the interior regions of the cable, inducing unwanted current and voltages. The aim of this paper is to verify a circuit model tool with our previously proposed analytical model [1] for evaluating currents and voltages induced in the inner conductor of braided-shield cables. This circuit model will enable coupling between electromagnetic and circuit simulations.
In this paper, we investigate the coupling from external electromagnetic (EM) fields to the interior EM fields of a high-quality factor cylindrical cavity through a small perturbing slot. We illustrate the shielding effectiveness versus frequency, highlighting bounds on the penetrant power through the slot. Because internal fields may become larger than external ones, we then introduce a small amount of microwave absorbing materials decorating the slot to improve shielding effectiveness considerably, as shown by both simulations and experiments. Although the cylindrical cavity is used for demonstration purposes in this paper, the conclusions presented here can be leveraged for use with more complex cavity structures.
Recently there has been a large interest in achieving metasurface resonances with large quality factors. In this article, we examine metasurfaces that comprised a finite number of magnetic dipoles oriented parallel or orthogonal to the plane of the metasurface and determine analytic formulas for their resonances’ quality factors. These conditions are experimentally achievable in finite-size metasurfaces made of dielectric cubic resonators at the magnetic dipole resonance. Our results show that finite metasurfaces made of parallel (to the plane) magnetic dipoles exhibit low quality factor resonances with a quality factor that is independent of the number of resonators. More importantly, finite metasurfaces made of orthogonal (to the plane) magnetic dipoles lead to resonances with large quality factors, which ultimately depend on the number of resonators comprising the metasurface. In particular, by properly modulating the array of dipole moments by having a distribution of resonator polarizabilities, one can potentially increase the quality factor of metasurface resonances even further. These results provide design guidelines to achieve a sought quality factor applicable to any resonator geometry for the development of new devices such as photodetectors, modulators, and sensors.
This report explores the coupling between EIGER simulations and a transmission line analytical model to enable end-to-end simulations to translate an exterior electromagnetic environment to assess effects on electronic system performance.
This report explores the potential for reducing the fields and the quality factor within a system cavity by introducing microwave absorbing materials. Although the concept of introducing absorbing (lossy) materials within a cavity to drive the interior field levels down is well known, increasing the loading into a complex weapon cavity specifically for improved electromagnetic performance has not, in general, been considered, and this will be the subject of this work. We compare full-wave simulations to experimental results, demonstrating the applicability of the proposed method.
Improving the sensitivity of infrared detectors is an essential step for future applications, including satellite- and terrestrial-based systems. We investigate nanoantenna-enabled detectors (NEDs) in the infrared, where the nanoantenna arrays play a fundamental role in enhancing the level of absorption within the active material of a photodetector. The design and optimization of nanoantenna-enabled detectors via full-wave simulations is a challenging task given the large parameter space to be explored. Here, we present a fast and accurate fully analytic circuit model of patch-based NEDs. This model allows for the inclusion of real metals, realistic patch thicknesses, non-absorbing spacer layers, the active detector layer, and absorption due to higher-order evanescent modes of the metallic array. We apply the circuit model to the design of NED devices based on Type II superlattice absorbers, and show that we can achieve absorption of ∼70% of the incoming energy in subwavelength (∼λ∕5) absorber layers. The accuracy of the circuit model is verified against full-wave simulations, establishing this model as an efficient design tool to quickly and accurately optimize NED structures.
This report compares ATLOG modeling results for the response of a finite-length dissipative buried conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG frequency-domain method based on transmission line theory. Estimates of the impedance per unit length and admittance per unit length for a cable laying in a PVC pipe embedded in a concrete block are reported. Current wave shapes from both a single conductor and composite differential mode and antenna mode arrangements are close to those observed in the experiments. Intentionally Left Blank
This report considers plane wave coupling to a transmission line consisting of a wire above a conducting ground. Comparisons are made for the two types of available source models, along with a discussion about the decomposition of the line currents. Simple circuit models are constructed for the terminating impedances at the ends of the line including radiation effects. Results from the transmission line with these loads show good agreement with full wave simulations. Intentionally Left Blank
In this paper, we report our recent findings about a first principles, multipole-based model of electric and magnetic cable braid penetrations. We consider for brevity a one-dimensional array of wires, but the model can be readily applied to realistic cable geometries. Comparisons between the first principles method and analytical formulas will be provided for both electric and magnetic penetration cases. These comparisons confirm that our first principles model works within the geometric characteristics of many commercial cables.
In this paper, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e., the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius to half spacing ratio of 0.5–0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.
In this paper we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.
We report a frequency-domain method based on transmission line theory that we name ATLOG-Analytic Transmission Line Over Ground-to model finite or infinite wires interacting with a conducting ground excited by an electromagnetic pulse. This method allows for the treatment of finite or infinite lossy, coated wires above a lossy ground, as well as resting on or buried beneath the ground. Comparisons with full-wave simulations strengthen the validity of the proposed method.
We propose a cable braid electromagnetic penetration model that is based on first-principles and is derived strictly from the geometrical parameters of the cable in question. We apply this formulation to the case of a one-dimensional array of wires, which can also be modeled analytically via a multipole-conformal mapping expansion for the wire charges and is extended by means of Laplace solutions in bipolar coordinates. Both electric and magnetic penetrations are analyzed, and comparisons are performed between results from the first principles cable braid electromagnetic penetration model and those obtained using the multipole-conformal mapping expansion method. We find results in very good agreement when using up to the octopole moment (for the first principles model), covering a dynamic range of radius-to-half-spacing ratio up to 0.6. These results give us the confidence that our first principles model is applicable to the geometric characteristics of many commercial cables.
In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a technique to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank
We examine integration of a patterned metal nanoantenna (or metasurface) directly onto long-wave infrared detectors. These structures show significantly improved external quantum efficiency compared to their traditional counterparts. We will show simulation and experimental results.
This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a frequency-domain method based on transmission line theory and implemented it in a code we call ATLOG - Analytic Transmission Line Over Ground. Select results are compared to ones computed using the circuit simulator Xyce. Intentionally Left Blank
This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a time-domain method based on transmission line theory that allows accounting for time-varying air conductivities. We implemented such method in a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared the frequency-domain version of ATLOG previously developed and to the circuit simulator Xyce in some instances. Intentionally Left Blank
This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank
This report details the comparison of ATLOG modeling results for the response of a finite-length dissipative aerial conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG time-domain method based on transmission line theory. Good agreement is observed between simulations and experiments. Intentionally Left Blank
In this paper we develop a fully retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full cubes as well as split cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problem at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.
In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. These results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.
The goal of this paper is to investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We realize a 2×2 pixelated array structure that supports two wavelengths of operation. After designing each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array, we construct a supercell made of a 2×2 pixelated array with periodic boundary conditions mimicking the full NED. In the NED, each pixel comprises 10-20 nanoantennas. Our simulations account for the cross-talk between contiguous pixels. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. We want to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.
The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range of 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.
This paper details a model for the response of a finite- or an infinite-length wire interacting with a conducting ground to an electromagnetic pulse excitation. We develop a frequency–domain method based on transmission line theory that we name ATLOG–Analytic Transmission Line Over Ground. This method is developed as an alternative to full-wave methods, as it delivers a fast and reliable solution. It allows for the treatment of finite or infinite lossy, coated wires, and lossy grounds. The cases of wire above ground, as well as resting on the ground and buried beneath the ground are treated. The reported method is general and the time response of the induced current is obtained using an inverse Fourier transform of the current in the frequency domain. The focus is on the characteristics and propagation of the transmission line mode. Comparisons with full-wave simulations strengthen the validity of the proposed method.
We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of ∼1300 at ∼10.8 μm. Then, we present two experimental demonstrations operating in the near-infrared (∼1 μm): a silicon-based implementation that achieves a quality factor of ∼350; and a gallium arsenide-based structure that achieves a quality factor of ∼600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices.
Cable shielding to protect against coupling of electromagnetic radiation into a component or circuit, particularly over large frequency bands, is at times a challenging task. It is general understanding that increasing the number of shields of a cable will improve the shielding performance. However, there are situations in which a cable with multiple shields may perform similar to or in some cases worse than a cable with a single shield, and this analysis has seldom been discussed in the literature. We intend to shed more light onto this topic in this paper.
Metamaterial dielectric resonators represent a promising path toward low-loss metamaterials at optical frequencies. In this paper we utilize perturbations of high symmetry resonator geometries, such as cubes, either to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering and Huygens' metasurfaces, or to induce couplings between the otherwise orthogonal resonator modes to achieve high-quality factor Fano resonances. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.
This report examines bounds on the penetrant power through ports of entry into a conductive cavity. We first replace the cavity by a load and consider the maximum power transfer properties of an antenna or an aperture. We consider how limitations on the load quality factor place limits on received power. For general frequency ranges we model the backing region by means of a uniformly distributed matched load along a slot aperture and adjust its value for maximum power transfer. This result is derived in closed form using a transmission line model for the aperture. This result illustrates the reduction in received power for low frequencies with finitely conducting wall materials. At high frequencies it approaches the receiving cross section of a linear array having the slot length dimension. Next we examine a slot aperture in a conducting rectangular enclosure and determine how the cavity wall losses and resulting quality factor limit the penetrant power. Detailed simulations and experimental measurements are compared with each other and with the bounding results to assess the accuracy of the bounds. These comparisons also indicate limitations on the accuracy of the models due to perturbing influences in construction, such as bolted joints.
Streamers are a type of ionization wave occurring during the early time phase of a gas discharge. They are typically launched when the evolving space charge of an electron avalanche reaches a certain critical level, beyond which the fi eld of the space charge itself is su ffi cient to drive further evolution of the ionization process. One of the most common ways to model streamers is known as a 1.5D model where the fi eld of a uniformly charged set of discs of chosen radius is evaluated along the cylinder axis. This fi eld drives a one-dimensional kinetic ionization process, which results in the nonlinear evolution of the streamer. This model is e ffi cient, but has the drawback of fi xing the radius and requiring it as an input parameter. Previously, we tried to extend t he 1.5D model to include evolution of its radius by developing a two-step process of axial and radial exp ansion but we encountered stability issues with the model that we thought could have been due to decoupling the two steps. In this report we introduce a new formulation of a streamer model that includes radial expansion. The goal is to take radial moments of the starting axisymmetric fl uid equations and thereby include the radial evolution of the streamer naturally and self-consistently from the beginning. We fi rst develop the fl uid model moments without electron attachment. We review the calculation of the electric fi elds required for the model and investigate approximations to improve computational e ffi ciency. We discuss the code implementation of the model and fi nally, we add attachment to allow the treatment of electronegative gases. Intentionally Left Blank
The di ff usion through shells consisting of either a single conducting or double conducting layers are examined. Exterior drives resulting from Electromagn etic Radiation (EMR), Electromagnetic Pulse (EMP), nearby (indirect) lightning, and DC (low frequency) magnetic fi eldsareused. Boththeinterior fi eld and the induced voltage from a maximally oriented and sized single turn loop are estimated. It is shown that the loop voltage with the empty cavity bounds the case where the center region is excluded by a conducting object. The cases of interior magnetic and electric fi elds from an exterior magnetic drive and the interior electric fi eld from an exterior electric drive are both solved; the magnetic interior fi eldfromanexterior magnetic drive is the only case that results in a nonzero low frequency penetration. Intentionally Left Blank
In this paper we report on a transmission-line model for calculating the shielding effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect conductors and apertures in the shields permit external magnetic and electric fields to penetrate into the interior regions of the cable, we use this model to estimate the effects of the outer shield current and voltage (associated with the external excitation and boundary conditions associated with the external conductor) on the inner conductor current and voltage. It is commonly believed that increasing the number of shields of a cable will improve the shielding performance. However, this is not always the case, and a cable with multiple shields may perform similar to or in some cases worse than a cable with a single shield. We want to shed more light on these situations, which represent the main focus of this paper.
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
In this article, a negative-index metamaterial prism based on a composite unit cell containing a split-ring resonator and a z-dipole is designed and simulated. The design approach combines simulations of a single unit cell to identify the appropriate cell design (yielding the desired negative-index behavior) together with subcell modeling (which simplifies the mesh representation of the resonator geometry and allows for a larger number of resonator cells to be handled). In addition to describing the methodology used to design a n = -1 refractive index prism, results including the effective-medium parameters, the far-field scattered patterns, and the near-zone field distributions corresponding to a normally incident plane-wave excitation of the prism are presented.
The goal of this paper is to define a unit cell containing an electric and magnetic complement and degenerate pair of resonators and subsequently construct a 3-dimensional (3D) n = -1 refractive index prism based upon the final unit cell design. In this effort simulating and observing the response of a negative-index metamaterial (MM) prism to a plane-wave excitation was a primary intent. However, an equally-important goal was to develop an efficient and high-fidelity process for arriving at the prism design.
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank
When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.
This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.
The voltage on a single-turn loop inside an enclosure characterizes the enclosure shielding effectiveness against a lightning insult. In this paper, the maximum induced voltage on a single-turn loop inside an enclosure from lightning coupling to a metal enclosure wall is expressed in terms of two multiplicative factors: (A) the normalized enclosure wall peak penetration ratio (i.e., ratio of the peak interior electric field multiplied by the sheet conductance to the exterior magnetic field) and (B) the DC voltage on an ideal optimum coupling loop assuming the ideal penetration ratio of one. As a result of the decomposition, the variation of the peak penetration ratio (A) for different coupling mechanisms is found to be small; the difference in the maximum voltage hence arises from the DC voltage on the optimum coupling loop (B). Maximum voltages on an optimum coupling loop inside a finite cylinder enclosure for direct attachment and a lightning line source at different distances from the enclosure are given in Table 3.
In this paper, fusing of a metallic conductor is studied by judiciously using the solution of the one-dimensional heat equation, resulting in an approximate method for determining the threshold fusing current. The action is defined as an integration of the square of the wire current over time. The burst action (the action required to completely vaporize the material) for an exploding wire is then used to estimate the typical wire gapping action (involving wire fusing), from which gapping time can be estimated for a gapping current greater than a factor of two over the fusing current. The test data are used to determine the gapped length as a function of gapping current and to show, for a limited range, that the gapped length is inversely proportional to gapping time. The gapping length can be used as a signature of the fault current level in microelectronic circuits.
This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.
In this paper, linear lightning diffusion into a Faraday cage is studied. The high-altitude Electromagnetic Pulse (HEMP) and nearby lightning are used as examples for a uniform field drive and the direct-strike lightning adjacent to the enclosure is used as a worst-case configuration of a line source excitation. The time-derivative of the magnetic field (HDOT) inside the enclosure for a uniform field drive with a decaying exponential waveform is analyzed and numerically determined. The physically relevant time-derivative of the magnetic field and voltage characterizations of an optimum coupling loop inside the enclosure for a decaying exponential waveform in a worst-case line source coupling configuration are numerically determined. First, the impulse and the unit step response peaks are shown to bound the decaying exponential peaks. Next, a simple fit function for a decaying exponential peak HDOT or a voltage bound for a single-turn loop inside the Faraday cage is constructed from peak responses of the unit step and impulse limiting cases. Excitations used are from (1) a uniform field drive of HEMP or nearby lightning and (2) a line source of direct-strike lightning. Comparisons of HDOT and voltage bounds of the fit function and actual numerical evaluations are given in Table 3.
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scope and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).
This paper introduces an effective-media toolset that can be used for the design of metamaterial structures based on metallic components such as split-ring resonators and dipoles, as well as dielectric spherical resonators. For demonstration purposes the toolset will be used to generate infrared metamaterial designs, and the predicted performances will be verified with full-wave numerical simulations.
This report documents calculations conducted to determine if 42 low-power transmitters located within a metallic enclosure can initiate electro-explosive devices (EED) located within the same enclosure. This analysis was performed for a generic EED no-fire power level of 250 mW. The calculations show that if the transmitters are incoherent, the power available is 32 mW - approximately one-eighth of the assumed level even with several worst-case assumptions in place.
This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).
Simple formulas are given for the interior voltages appearing across bolted joints from exterior lightning currents. External slot and bolt inductances as well as internal slot and bolt diffusion effects are included. Both linear and ferromagnetic wall materials are considered. A useful simplification of the slot current distribution into linear stripline and cylindrical parts (near the bolts) allows the nonlinear voltages to be estimated in closed form.
In October 2005, an intensive three-year Laser Triggered Gas Switch (LTGS) development program was initiated to investigate and solve observed performance and reliability issues with the LTGS for ZR. The approach taken has been one of mission-focused research: to revisit and reassess the design, to establish a fundamental understanding of LTGS operation and failure modes, and to test evolving operational hypotheses. This effort is aimed toward deploying an initial switch for ZR in 2007, on supporting rolling upgrades to ZR as the technology can be developed, and to prepare with scientific understanding for the even higher voltage switches anticipated needed for future high-yield accelerators. The ZR LTGS was identified as a potential area of concern quite early, but since initial assessments performed on a simplified Switch Test Bed (STB) at 5 MV showed 300-shot lifetimes on multiple switch builds, this component was judged acceptable. When the Z{sub 20} engineering module was brought online in October 2003 frequent flashovers of the plastic switch envelope were observed at the increased stresses required to compensate for the programmatically increased ZR load inductance. As of October 2006, there have been 1423 Z{sub 20} shots assessing a variety of LTGS designs. Numerous incremental and fundamental switch design modifications have been investigated. As we continue to investigate the LTGS, the basic science of plastic surface tracking, laser triggering, cascade breakdown, and optics degradation remain high-priority mission-focused research topics. Significant progress has been made and, while the switch does not yet achieve design requirements, we are on the path to develop successively better switches for rolling upgrade improvements to ZR. This report summarizes the work performed in FY 2006 by the large team. A high-level summary is followed by detailed individual topical reports.
This paper examined the high frequency time harmonic localization of modal fields in two dimensional cavities along unstable periodic orbits. The elliptic formalism, combined with the random phase approach, allowed the treatment of both convex and concave boundary geometries.
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
In this LDRD we examine techniques to analyze the electromagnetic scattering from structures that are nearly periodic. Nearly periodic could mean that one of the structure's unit cells is different from all the others--a defect. It could also mean that the structure is truncated, or butted up against another periodic structure to form a seam. Straightforward electromagnetic analysis of these nearly periodic structures requires us to grid the entire structure, which would overwhelm today's computers and the computers in the foreseeable future. In this report we will examine various approximations that allow us to continue to exploit some aspects of the structure's periodicity and thereby reduce the number of unknowns required for analysis. We will use the Green's Function Interpolation with a Fast Fourier Transform (GIFFT) to examine isolated defects both in the form of a source dipole over a meta-material slab and as a rotated dipole in a finite array of dipoles. We will look at the numerically exact solution of a one-dimensional seam. In order to solve a two-dimensional seam, we formulate an efficient way to calculate the Green's function of a 1d array of point sources. We next formulate ways of calculating the far-field due to a seam and due to array truncation based on both array theory and high-frequency asymptotic methods. We compare the high-frequency and GIFFT results. Finally, we use GIFFT to solve a simple, two-dimensional seam problem.
We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-{micro}m-diameter pinholes in a 50-{micro}m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of {approx}1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented.
The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.
This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.
This report presents a modification of a previous model for the statistical distribution of linear antenna impedance. With this modification a simple formula is determined which yields accurate results for all ratios of modal spectral width to spacing. It is shown that the reactance formula approaches the known unit Lorentzian in the lossless limit.
Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry
By using a multipole-conformal mapping expansion for the wire currents we examine the accuracy of approximations for the transfer inductance of a one dimensional array of wires (wire grid). A simple uniform fit is constructed by introduction of the decay factor from bipolar coordinates into existing formulas for this inductance.
This report assembles models for the response of a wire interacting with a conducting ground to an electromagnetic pulse excitation. The cases of an infinite wire above the ground as well as resting on the ground and buried beneath the ground are treated. The focus is on the characteristics and propagation of the transmission line mode. Approximations are used to simplify the description and formulas are obtained for the current. The semi-infinite case, where the short circuit current can be nearly twice that of the infinite line, is also examined.
Transverse electromagnetic (TEM) wave analysis is used to estimate the efficiencies of the coax to triplate transition in Sandia's Z-20 test module. The structure of both the TEM mode and higher order TE modes in the triplate transmission line are characterized. In addition, three dimensional time domain simulations are carried out and used in conjunction with the modal analysis to provide insight into the wave structure excited in the triplate transmission line.
This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.
The research discussed in this report was conceived during our earlier attempts to simulate breakdown across a dielectric surface using a Monte Carlo approach. While cataloguing the various ways that a dielectric surface could affect the breakdown process, we found that one obvious effect--photoemission from the surface--had been ignored. Initially, we felt that inclusion of this effect could have a major impact on how an ionization front propagates across a surface because of the following argument chain: (1) The photon energy required to release electrons from a surface via photoemission is less than the photon energy required to ionize gas molecules directly. (2) The mean free path of a photon in gas is longer for low-energy photons than for high-energy photons. (3) Photoionization is a major effect in advancing the ionization front for breakdown in gas without a surface, therefore, we know that even high-energy photons can be released from the head of a streamer and propagate some distance through the gas. Our hypothesis, therefore, was that photons with energies near the threshold of photoemission could travel further in front of the streamer before being absorbed than higher-energy photons needed for photoionization, yet the lower-energy photons, with the help of the surface, could still create seed electrons for new avalanches. Thus, the streamer would advance more rapidly next to a surface than in gas alone. Additionally, the photoemission from the surface would add to the electrons in the avalanche and cause the avalanche to grow faster. After some study, however, we are forced to conclude that although photoemission does contribute to avalanche growth at fields near breakdown threshold, secondary electron emission causes electrons to stick to the surface and cancels out the growth due to photoemission. This conclusion assumes a discharge that occurs over a short period of time so that charging of the surface, which could alter its secondary electron emission characteristics, does not occur. This report documents the numerical work we did on investigating this effect and the experimental work we did on pre-breakdown phenomena in gas.
The goal of this project was to develop a device that uses electric fields to grasp and possibly levitate LIGA parts. This non-contact form of grasping would solve many of the problems associated with grasping parts that are only a few microns in dimensions. Scaling laws show that for parts this size, electrostatic and electromagnetic forces are dominant over gravitational forces. This is why micro-parts often stick to mechanical tweezers. If these forces can be controlled under feedback control, the parts could be levitated, possibly even rotated in air. In this project, we designed, fabricated, and tested several grippers that use electrostatic and electromagnetic fields to grasp and release metal LIGA parts. The eventual use of this tool will be to assemble metal and non-metal LIGA parts into small electromechanical systems.
One of the tasks performed routinely by the Electromagnetics and Plasma Physics Analysis Department at Sandia National Laboratories is analyzing the effects of direct-strike lightning on Faraday cages that protect sensitive items. The Faraday cages analyzed thus far have many features in common. This report is an attempt to collect equations and other information that have been routinely used in the past in order to facilitate future analysis.
This paper presents models and measurements of antenna input impedance in resonant cavities at high frequencies.The behavior of input impedance is useful in determining the transmission and reception characteristics of an antenna (as well as the transmission characteristics of certain apertures). Results are presented for both the case where the cavity is undermoded (modes with separate and discrete spectra) as well as the over moded case (modes with overlapping spectra). A modal series is constructed and analyzed to determine the impedance statistical distribution. Both electrically small as well as electrically longer resonant and wall mounted antennas are analyzed. Measurements in a large mode stirred chamber cavity are compared with calculations. Finally a method based on power arguments is given, yielding simple formulas for the impedance distribution.
The purpose of this research was to develop a science-based understanding of the early-time behavior of electric surface arcing in air at atmospheric pressure. As a first step towards accomplishing this, we used a kinetic approach to model an electron swarm as it evolved in a neutral gas under the influence of an applied electric field. A computer code was written in which pseudo-particles, each representing some number of electrons, were accelerated by an electric field. The electric field due to the charged particles was calculated efficiently using a tree algorithm. Collision of the electrons with the background gas led to the creation of new particles through the processes of ionization and photoionization. These processes were accounted for using measured cross-section data and Monte Carlo methods. A dielectric half-space was modeled by imaging the charges in its surface. Secondary electron emission from the surface, resulting in surface charging, was also calculated. Simulation results show the characteristics of a streamer in three dimensions. A numerical instability was encountered before the streamer matured to form branching.
The simple formula, {l_angle}P{sub r}{r_angle}=(E{sub o}{sup 2}/{eta})({lambda}{sup 2}/8{pi}), for the received power of an antenna with a matched load in an over-moded cavity actually holds for an antenna of any shape and size. This can be seen from the close connection between the correlation tensor of the cavity field at two different points and the imaginary part of the free-space dyadic Green's function.