Publications

10 Results
Skip to search filters

Optical Imaging on Z LDRD: Design and Development of Self-Emission and Debris Imagers

Yager-Elorriaga, David A.; Montoya, Michael M.; Bliss, David E.; Ball, Christopher R.; Atencio, Phillip M.; Carpenter, Brian C.; Fuerschbach, Kyle H.; Fulford, Karin W.; Lamppa, Derek C.; Lowinske, Michael C.; Lucero, Larry M.; Patel, Sonal P.; Romero, Anthony R.; Tanbakuchi, Anthony; Breznik-Young, Bonnie B.

We present an overview of the design and development of optical self-emission and debris imaging diagnostics for the Z Machine at Sandia National Laboratories. These diagnostics were designed and implemented to address several gaps in our understanding of visibly emitting phenomenon on Z and the post-shot debris environment. Optical emission arises from plasmas that form on the transmission line that delivers energy to Z loads and on the Z targets themselves; however, the dynamics of these plasmas are difficult to assess without imaging data. Addressing this, we developed a new optical imager called SEGOI (Self-Emission Gated Optical Imager) that leverages the eight gated optical imagers and two streak cameras of the Z Line VISAR system. SEGOI is a low cost, side-on imager with a 1 cm field of view and 30-50 µm spatial resolution, sensitive to green light (540-600 nm). This report outlines the design considerations and development of this diagnostic and presents an overview of the first diagnostic data acquired from four experimental campaigns. SEGOI was fielded on power flow experiments to image plasmas forming on and between transmission lines, on an inertial confinement fusion experiment called the Dynamic Screw Pinch to image low density plasmas forming on return current posts, on an experiment designed to measure the magneto Rayleigh-Taylor instability to image the instability bubble trajectory and self-emission structures, and finally on a Magnetized Liner Inertial Fusion (MagLIF) experiment to image the emission from the target. The second diagnostic developed, called DINGOZ (Debris ImagiNG on Z), was designed to improve our understanding of the post-shot debris environment. DINGOZ is an airtight enclosure that houses electronics and batteries to operate a high-speed (10-400 kfps) camera in the Z Machine center section. We report on the design considerations of this new diagnostic and present the first high-speed imaging data of the post-shot debris environment on Z.

More Details

The inductively driven transmission line: A passively coupled device for diagnostic applications on the Z pulsed power facility

Review of Scientific Instruments

Myers, Clayton E.; Lamppa, Derek C.; Jennings, Christopher A.; Gomez, Matthew R.; Knapp, Patrick K.; Kossow, Michael R.; Lucero, Larry M.; Moore, James K.; Yager-Elorriaga, David A.

The inductively driven transmission line (IDTL) is a miniature current-carrying device that passively couples to fringe magnetic fields in the final power feed on the Z Pulsed Power Facility. The IDTL redirects a small amount of Z's magnetic energy along a secondary path to ground, thereby enabling pulsed power diagnostics to be driven in parallel with the primary load for the first time. IDTL experiments and modeling presented here indicate that IDTLs operate non-perturbatively on Z and that they can draw in excess of 150 kA of secondary current, which is enough to drive an X-pinch backlighter. Additional experiments show that IDTLs are also capable of making cleaner, higher-fidelity measurements of the current flowing in the final feed.

More Details

Auto-magnetizing (AutoMag) liners for MagLIF: Helically-wound composite liners

Awe, Thomas J.; Shipley, Gabriel A.; Hutchinson, Trevor M.; Hutsel, Brian T.; Jaramillo, Deanna M.; Jennings, Christopher A.; Lamppa, Derek C.; Lucero, Diego J.; Lucero, Larry M.; McBride, Ryan D.; Slutz, Stephen A.

Magneti zed Liner Inerti al Fusion (MagLIF ) is an inertial confinement fusion (ICF) concept that includes a strong magnetic field embedded in the fuel to mitigate thermal conduction loss during the implosion . MagLIF experiments on Sandia's 20 MA Z Machine uses an external Helmholtz - like coil pair for fuel premagnetization . By contrast, t he novel AutoMag concept employs a composite liner (cylindrical tube) with helically oriented conduction paths separated by insulating material to provide axial premagnetization of the fuel . Initially, during a current prepulse that slowly rises to %7E1 MA, current flows helically through the AutoMag liner , and so urces the fuel with an axial field . Next, a rapidly rising main current pulse breaks down the insulation and current in th e liner becomes purely axial. The liner and premagnetized fuel are then compressed by the rapidly growing azimuthal field external to t he liner. This integrated axial - field - production mechanism offers a few potential advantages when compared to the externa l premagnetization coils. AutoMag can increase drive current to MagLIF experiments by enabling a lower inductance transmission line , provide higher premagnetization field (>30 T), and greatly increase radial x - ray diagnostic access. 3D electromagnetic si mulations using ANSYS Maxwell have been completed in order to explore the current distributions within the helical conduction paths, the inter - wire dielectric strength properties, and the thermal properties of the helical conduction paths during premagneti zation (%7E1 MA in 100ns). Th ree liner designs , of varying peak field strength, and associated varying risk of dielectric breakdown, will soon be tested in experiments on the %7E 1 MA, 100ns Mykonos facility. Experiments will measure B z (t) inside of the line r and assess failure mechanisms.

More Details

Loop-to-loop coupling

Warne, Larry K.; Basilio, Lorena I.; Langston, William L.; Salazar, Robert S.; Coleman, Phillip D.; Lucero, Larry M.

This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

More Details
10 Results
10 Results