Publications

17 Results
Skip to search filters

Evaluation of High Temperature Plastics as a Ceramic Replacement

Redline, Erica M.; Dial, Brent E.; Stavig, Mark E.; Sawyer, P.S.; Miller, Lance L.

This report describes the 2015-2017 fiscal year research efforts to evaluate high temperature plastics as replacement materials for ceramics in electrical contact assemblies. The main objective of this work was to assess the feasibility of replacing existing high-price ceramic inserts with a polymeric material. Current ceramic parts are expensive due to machining costs and can suffer brittle failure. Therefore, replacing the ceramic with a more cost-effective material -- in this case a plastic -- is highly desirable. Not only are plastics easier to process, but they can also eliminate final tooling and are less brittle than ceramics. This effort used a three-phase approach: selection of appropriate materials determined by a comprehensive literature review, performance of an initial thermal stability screening, understanding of aging behavior under normal and off-normal conditions, and evaluation of performance at elevated temperatures. Two polymers were determined to meet the desired criteria: polybenzimidazole, and Vespel(r) SP-1 polyimide. Polymer derived ceramics may also be useful but will require further development of molding capabilities that were beyond the scope of this program. This page intentionally left blank.

More Details

Atmospheric solids analysis probe mass spectrometry for the rapid identification of pollens and semi-quantification of flavonoid fingerprints

Rapid communications in mass spectrometry : RCM

Xiao, Xiaoyin; Miller, Lance L.; Parchert, Kylea J.; Hayes, Dulce C.; Hochrein, James M.

RATIONALE: From allergies to plant reproduction, pollens have important impacts on the health of human and plant populations, yet identification of pollen grains remains difficult and time-consuming. Low-volatility flavonoids generated from pollens cannot be easily characterized and quantified with current analytical techniques. METHODS: Here we present the novel use of atmospheric solids analysis probe mass spectrometry (ASAP-MS) for the characterization of flavonoids in pollens. Flavonoid patterns were generated for pollens collected from different plant types (trees and bushes) in addition to bee pollens from distinct geographic regions. Standard flavonoids (kaempferol and rhamnazin) and those produced from pollens were compared and assessed with ASAP-MS using low-energy collision MS/MS. Results for a semi-quantitative method for assessing the amount of a flavonoid in pollens are also presented. RESULTS: Flavonoid patterns for pollen samples were distinct with variability in the number and relative abundance of flavonoids in each sample. Pollens contained 2-5 flavonoids, and all but Kochia scoparia contained kaempferol or kaempferol isomers. We establish this method as a reliable and applicable technique for analyzing low-volatility compounds with minimal sample preparation. Standard curves were generated using 0.2-5 μg of kaempferol; from these experiments, it was estimated that there is approximately 2 mg of kaempferol present in 1 g of P. nigra italica pollen. CONCLUSIONS: Pollens can be characterized with a simple flavonoid pattern rather than analyzing the whole product pattern or the products-temperature profiles. ASAP-MS is a rapid analytical technique that can be used to distinguish between plant pollens and between bee pollens originating from different regions. Copyright © 2016 John Wiley & Sons, Ltd.

More Details

Isomer-sensitive deboronation in reductive aminations of aryl boronic acids

Tetrahedron Letters

Jones, Brad H.; Wheeler, David R.; Wheeler, Jill S.; Miller, Lance L.; Alam, Todd M.; Spoerke, Erik D.

Deboronation is observed during the reductive amination of formylphenylboronic acid (FPBA) to the amine termini and side chains of peptides. This deboronation is sensitive to the isomerism of the boronic acid (BA), with ortho-FPBA yielding complete deboronation in the preparation of an N-terminally-modified dipeptide. The observed behavior is also clearly mediated by the chemical identity of the amine substrate. These results reveal a previously undocumented subtlety of BA functionalization and highlight the importance of thorough spectroscopic characterization in the preparation of peptide and small molecule BAs.

More Details

A multi-stimuli responive, self-assembling, boronic acid dipeptide

ChemComm

Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; McKenzie, Bonnie B.; Miller, Lance L.; Wheeler, David R.; Spoerke, Erik D.

Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Thus, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.

More Details

Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

Sandia journal manuscript; Not yet accepted for publication

Xiao, Xiaoyin; Miller, Lance L.; Bernstein, Robert B.; Hochrein, James M.

The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

More Details
17 Results
17 Results