Publications

6 Results
Skip to search filters

MIDAS: Modeling Individual Differences using Advanced Statistics

Wisniewski, Kyra L.; Matzen, Laura E.; Stites, Mallory C.; Ting, Christina T.; Tuft, Marie T.; Sorge, Marieke A.

This research explores novel methods for extracting relevant information from EEG data to characterize individual differences in cognitive processing. Our approach combines expertise in machine learning, statistics, and cognitive science, advancing the state-of-the art in all three domains. Specifically, by using cognitive science expertise to interpret results and inform algorithm development, we have developed a generalizable and interpretable machine learning method that can accurately predict individual differences in cognition. The output of the machine learning method revealed surprising features of the EEG data that, when interpreted by the cognitive science experts, provided novel insights to the underlying cognitive task. Additionally, the outputs of the statistical methods show promise as a principled approach to quickly find regions within the EEG data where individual differences lie, thereby supporting cognitive science analysis and informing machine learning models. This work lays methodological ground work for applying the large body of cognitive science literature on individual differences to high consequence mission applications.

More Details

Physiological Characterization of Language Comprehension

Matzen, Laura E.; Stites, Mallory C.; Ting, Christina T.; Howell, Breannan C.; Wisniewski, Kyra L.

In this project, our goal was to develop methods that would allow us to make accurate predictions about individual differences in human cognition. Understanding such differences is important for maximizing human and human-system performance. There is a large body of research on individual differences in the academic literature. Unfortunately, it is often difficult to connect this literature to applied problems, where we must predict how specific people will perform or process information. In an effort to bridge this gap, we set out to answer the question: can we train a model to make predictions about which people understand which languages? We chose language processing as our domain of interest because of the well- characterized differences in neural processing that occur when people are presented with linguistic stimuli that they do or do not understand. Although our original plan to conduct several electroencephalography (EEG) studies was disrupted by the COVID-19 pandemic, we were able to collect data from one EEG study and a series of behavioral experiments in which data were collected online. The results of this project indicate that machine learning tools can make reasonably accurate predictions about an individual?s proficiency in different languages, using EEG data or behavioral data alone.

More Details

Human-Constrained Indicators of Gatekeeping Behavior as a Role in Information Suppression: Finding Invisible Information and the Significant Unsaid

Bandlow, Alisa B.; Murchison, Nicole M.; Ting, Christina T.; Wisniewski, Kyra L.; Zhou, Angela E.

To date, disinformation research has focused largely on the production of false information ignoring the suppression of select information. We term this alternative form of disinformation information suppression. Information suppression occurs when facts are withheld with the intent to mislead. In order to detect information suppression, we focus on understanding the actors who withhold information. In this research, we use knowledge of human behavior to find signatures of different gatekeeping behaviors found in text. Specifically, we build a model to classify the different types of edits on Wikipedia using the added text alone and compare a human-informed feature engineering approach to a featureless algorithm. Being able to computationally distinguish gatekeeping behaviors is a first step towards identifying when information suppression is occurring.

More Details

TAFI/Kebab End of Project Report

Rintoul, Mark D.; Wisniewski, Kyra L.; Ward, Katrina J.; Khanna, Kanad K.

This report focuses on the two primary goals set forth in Sandia’s TAFI effort, referred to here under the name Kebab. The first goal is to overlay a trajectory onto a large database of historical trajectories, all with very different sampling rates than the original track. We demonstrate a fast method to accomplish this, even for databases that hold over a million tracks. The second goal is to then demonstrate that these matched historical trajectories can be used to make predictions about unknown qualities associated with the original trajectory. As part of this work, we also examine the problem of defining the qualities of a trajectory in a reproducible way.

More Details

Large-Scale Trajectory Analysis via Feature Vectors

Rintoul, Mark D.; Jones, Jessica L.; Newton, Benjamin D.; Wisniewski, Kyra L.; Wilson, Andrew T.; Ginaldi, Melissa J.; Waddell, Cleveland A.; Goss, Kenneth G.; Ward, Katrina J.

The explosion of both sensors and GPS-enabled devices has resulted in position/time data being the next big frontier for data analytics. However, many of the problems associated with large numbers of trajectories do not necessarily have an analog with many of the historic big-data applications such as text and image analysis. Modern trajectory analytics exploits much of the cutting-edge research in machine-learning, statistics, computational geometry and other disciplines. We will show that for doing trajectory analytics at scale, it is necessary to fundamentally change the way the information is represented through a feature-vector approach. We then demonstrate the ability to solve large trajectory analytics problems using this representation.

More Details
6 Results
6 Results