Publications

3 Results
Skip to search filters

A Framework for Inverse Prediction Using Functional Response Data

Journal of Computing and Information Science in Engineering

Ries, Daniel R.; Zhang, Adah S.; Tucker, James D.; Shuler, Kurtis; Ausdemore, Madeline A.

Inverse prediction models have commonly been developed to handle scalar data from physical experiments. However, it is not uncommon for data to be collected in functional form. When data are collected in functional form, it must be aggregated to fit the form of traditional methods, which often results in a loss of information. For expensive experiments, this loss of information can be costly. In this study, we introduce the functional inverse prediction (FIP) framework, a general approach which uses the full information in functional response data to provide inverse predictions with probabilistic prediction uncertainties obtained with the bootstrap. The FIP framework is a general methodology that can be modified by practitioners to accommodate many different applications and types of data. We demonstrate the framework, highlighting points of flexibility, with a simulation example and applications to weather data and to nuclear forensics. Results show how functional models can improve the accuracy and precision of predictions.

More Details

A Bayesian nonparametric analysis for zero-inflated multivariate count data with application to microbiome study

Journal of the Royal Statistical Society. Series C: Applied Statistics

Shuler, Kurtis; Verbanic, Samuel; Chen, Irene A.; Lee, Juhee

High-throughput sequencing technology has enabled researchers to profile microbial communities from a variety of environments, but analysis of multivariate taxon count data remains challenging. We develop a Bayesian nonparametric (BNP) regression model with zero inflation to analyse multivariate count data from microbiome studies. A BNP approach flexibly models microbial associations with covariates, such as environmental factors and clinical characteristics. The model produces estimates for probability distributions which relate microbial diversity and differential abundance to covariates, and facilitates community comparisons beyond those provided by simple statistical tests. We compare the model to simpler models and popular alternatives in simulation studies, showing, in addition to these additional community-level insights, it yields superior parameter estimates and model fit in various settings. The model's utility is demonstrated by applying it to a chronic wound microbiome data set and a Human Microbiome Project data set, where it is used to compare microbial communities present in different environments.

More Details
3 Results
3 Results