Publications

Results 1–25 of 230 for kuhlman
Skip to search filters

Deep Borehole Field Test Laboratory and Borehole Testing Strategy

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W.P.; Sevougian, Stephen D.; Bryan, Charles R.; Jang, Jay J.; Stein, Emily S.; Bauer, Stephen J.; Daley, Tom D.; Freifeld, Barry M.; Birkholzer, Jens T.; Spane, Frank A.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

More Details

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Stauffer, Phil S.; Boukhalfa, Hakim B.; Guiltinan, Eric J.; Rahn, Thom R.; Weaver, Doug W.; Otto, Shawn O.; Davis, Jon D.; Rutqvist, Jonny R.; Wu, Yuxin W.; Hu, Mengsu H.; Wang, Jiannan W.

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny R.; Guglielmi, Yves G.; Sasaki, Tsubasa S.; Deng, Hang D.; Li, Pei L.; Steefel, Carl S.; Tournassat, Christophe T.; Xu, Hao X.; Babhulgaonkar, Shaswat B.; Birkholzer, Jens T.; Sauer, Kirsten B.; Caporuscio, Florie C.; Rock, Marlena J.; Zavarin, Mavrik Z.; Wolery, Thomas J.; Chang, Elliot C.; Wainwright, Haruko W.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

Salt International Collaborations FY2021 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.; Stein, Emily S.; Gross, Michael B.

This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn O.; Dozier, Brian D.; Weaver, Doug W.; Stauffer, Phil S.; Guiltinan, Eric J.; Boukhalfa, Hakim B.; Rahn, Thom R.; Wu, Yuxin W.; Rutqvist, Jonny R.; Hu, Mengsu H.; Crandall, Dustin C.

Abstract not provided.

International Collaborations on Radioactive Waste Disposal in Salt (FY20)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.; Stein, Emily S.; Gross, Michael B.

This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details

Status Report on Laboratory Testing and International Collaborations in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Hadgu, Teklu H.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Mills, Melissa M.; Kirkes, Leslie D.; Xiong, Yongliang X.; Icenhower, Jonathan I.

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.

More Details

Conceptual Design and Requirements for Characterization and Field Test Boreholes: Deep Borehole Field Test

Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, R.J.; Heath, Jason; Herrick, Courtney G.; Jensen, Richard P.; Rigali, Mark J.; Hadgu, Teklu H.; Sevougian, Stephen D.; Birkholzer, Jens T.; Freifeld, Barry M.; Daley, Tom D.

Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test, introduced herein, is a demonstration of the DBD concept and these advances.

More Details

Mathematical Foundations for Nonlocal Interface Problems: Multiscale Simulations of Heterogeneous Materials (Final LDRD Report)

D'Elia, Marta D.; Bochev, Pavel B.; Foster, John E.; Glusa, Christian A.; Gulian, Mamikon G.; Gunzburger, Max G.; Trageser, Jeremy T.; Kuhlman, Kristopher L.; Martinez, Mario A.; Najm, H.N.; Silling, Stewart A.; Tupek, Michael T.; Xu, Xiao X.

Nonlocal models provide a much-needed predictive capability for important Sandia mission applications, ranging from fracture mechanics for nuclear components to subsurface flow for nuclear waste disposal, where traditional partial differential equations (PDEs) models fail to capture effects due to long-range forces at the microscale and mesoscale. However, utilization of this capability is seriously compromised by the lack of a rigorous nonlocal interface theory, required for both application and efficient solution of nonlocal models. To unlock the full potential of nonlocal modeling we developed a mathematically rigorous and physically consistent interface theory and demonstrate its scope in mission-relevant exemplar problems.

More Details

Salt International Collaborations (FY22 Update)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-22SN010303063. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations. The work summarized in this annual update has occurred during the COVID-19 pandemic, and little international or domestic travel has occurred. Most of the collaborations have been conducted via email or as virtual meetings, but a slow return to travel and in-person meetings has begun.

More Details

Field test to evaluate deep borehole disposal

Radwaste Solutions

Hardin, Ernest H.; Brady, Patrick V.; Clark, Andrew; Cochran, John R.; Freeze, Geoff; Kuhlman, Kristopher L.; MacKinnon, Bob; Sassani, David C.; Su, Jiann-Cherng S.

Sandia National Laboratories has begun research on the potential use of deep boreholes for the dis¬posal of radioactive waste. Characterization activities will focus on measurements and samples that are important for evaluating the long-term iso¬lation capability of the deep borehole disposal (DBD) concept. Engineering demonstration activities will focus on providing data to evaluate the concept’s operational safety and practicality. Procurement of a scientifically acceptable deep borehole field test (DBFT) site and a site management contractor is now under way.

More Details

Research needs for deep boreholes

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Brady, Patrick V.; Arnold, Bill W.; MacKinnon, R.J.; Hardin, Ernest H.; Sassani, David C.; Kuhlman, Kristopher L.; Freeze, Geoffrey A.

While deep borehole disposal of nuclear waste should rely primarily on off-the-shelf technologies pioneered by the oil and gas and geothermal industries, the development of new science and technology will remain important. Key knowledge gaps have been outlined in the research roadmap for deep boreholes (B. Arnold et al, 2012, Research, Development, and Demonstration Roadmap for Deep Borehole Disposal, Sandia National Laboratories, SAND2012-8527P) and in a recent Deep Borehole Science Needs Workshop. Characterizing deep crystalline basement, understanding the nature and role of deep fractures, more precisely age-dating deep groundwaters, and demonstrating long-term performance of seals are all important topics of interest. Overlapping deep borehole and enhanced geothermal technology needs include: quantification of seal material performance/failure, stress measurement beyond the borehole, advanced drilling and completion tools, and better subsurface sensors. A deep borehole demonstration has the potential to trigger more focused study of deep hydrology, high temperature brine-rock interaction, and thermomechanical behavior.

More Details

Spontaneous Imbibition Tests and Parameter Estimation in Volcanic Tuff

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

We present a dynamic laboratory spontaneous imbibition test and interpretation method, demonstrated on volcanic tuff samples from the Nevada National Security Site. The method includes numerical inverse modeling to quantify uncertainty of estimated two-phase fluid flow properties. As opposed to other approaches requiring multiple different laboratory instruments, the dynamic imbibition method simultaneously estimates capillary pressure and relative permeability from one test apparatus.

More Details
Results 1–25 of 230 for kuhlman
Results 1–25 of 230 for kuhlman