Publications

Results 1–50 of 230
Skip to search filters

Mathematical Foundations for Nonlocal Interface Problems: Multiscale Simulations of Heterogeneous Materials (Final LDRD Report)

D'Elia, Marta D.; Bochev, Pavel B.; Foster, John E.; Glusa, Christian A.; Gulian, Mamikon G.; Gunzburger, Max G.; Trageser, Jeremy T.; Kuhlman, Kristopher L.; Martinez, Mario A.; Najm, H.N.; Silling, Stewart A.; Tupek, Michael T.; Xu, Xiao X.

Nonlocal models provide a much-needed predictive capability for important Sandia mission applications, ranging from fracture mechanics for nuclear components to subsurface flow for nuclear waste disposal, where traditional partial differential equations (PDEs) models fail to capture effects due to long-range forces at the microscale and mesoscale. However, utilization of this capability is seriously compromised by the lack of a rigorous nonlocal interface theory, required for both application and efficient solution of nonlocal models. To unlock the full potential of nonlocal modeling we developed a mathematically rigorous and physically consistent interface theory and demonstrate its scope in mission-relevant exemplar problems.

More Details

Physically rigorous reduced-order flow models of fractured subsurface environments without explosive computational cost

Beskardes, G.D.; Weiss, Chester J.; Darrh, Andrea N.; Kuhlman, Kristopher L.; Chang, Kyung W.

Fractured media models comprise discontinuities of multiple lengths (e.g. fracture lengths and apertures, wellbore area) that fall into the relatively insignificant length scales spanning millimeter-scale fractures to centimeter-scale wellbores in comparison to the extensions of the field of interest, and challenge the conventional discretization methods imposing highly-fine meshing and formidably large numerical cost. By utilizing the recent developments in the finite element analysis of electromagnetics that allow to represent material properties on a hierarchical geometry, this project develops computational capabilities to model fluid flow, heat conduction, transport and induced polarization in large-scale geologic environments that possess geometrically-complex fractures and man-made infrastructures without explosive computational cost. The computational efficiency and robustness of this multi-physics modeling tool are demonstrated by considering various highly-realistic complex geologic environments that are common in many energy and national security related engineering problems.

More Details

FY2022 Progress on Imbibition Testing in Containment Science

Kuhlman, Kristopher L.; Good, Forest T.; LaForce, Tara; Heath, Jason

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as for vapor-phase contaminant transport and/or containment of noble gases in the subsurface. In this second progress report of FY22, we present two ongoing activities related to imbibition testing on volcanic rock samples. We present the development of a new analytical solution predicting the temperature response observed during imbibition into dry samples, as discussed in our previous first progress report for FY22. We also illustrate the use of a multi-modal capillary pressure distribution to simulate both early- and late-time imbibition data collected on tuff core that can exhibit multiple pore types. These FY22 imbibition tests were conducted for an extended period (i.e., far beyond the time required for the wetting front to reach the top of the sample), which is necessary for parameter estimation and characterization of two different pore types within the samples.

More Details

Salt International Collaborations (FY22 Update)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-22SN010303063. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations. The work summarized in this annual update has occurred during the COVID-19 pandemic, and little international or domestic travel has occurred. Most of the collaborations have been conducted via email or as virtual meetings, but a slow return to travel and in-person meetings has begun.

More Details

FY22 Progress on Multicontinuum Methods in Containment

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as containment transport and/or containment of gases in the subsurface. To estimate rock fluid flow properties and subsequently predict physically realistic processes such as patterns and timing of water, gas, and energy (e.g., heat) movement in the subsurface, laboratory spontaneous water imbibition with simultaneous temperature measurement and numerical modeling methods are presented in the FY22 progress report. A multiple-overlapping-continua conceptual model is used to explain and predict observed complex multi-phenomenological laboratory test behavior during spontaneous imbibition experiments. This report primarily addresses two complexities that arise during the experiments: 1) capturing the late-time behavior of spontaneous imbibition tests with dual porosity; and 2) understanding the thermal perturbation observed at or ahead of the imbibing wetting front, which are associated with adsorption of water in initially dry samples. We use numerical approaches to explore some of these issues, but also lay out a plan for further laboratory experimentation and modeling to best understand and leverage these unique observations.

More Details

DECOVALEX 2023 Task D -- Interim Report from SNL

Jove Colon, Carlos F.; Lopez, Carlos M.; Kuhlman, Kristopher L.

The capability of a 1-D PFLOTRAN model to simulate the S1-3 bentonite saturation experiment has been demonstrated and validated against experimental data. Work remains to be done to refine 1-D PFLOTRAN simulations of the experiment S1-4 which include evaluation of parameter sensitivities on the prediction of material saturation and relative permeabilities. This and further testing of PFLOTRAN capabilities will be done as part of DECOVALEX 2023 Task D contributions by the SNL team in the coming months.

More Details

Parameter estimation from spontaneous imbibition into volcanic tuff

Vadose Zone Journal

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

Two-phase fluid flow properties underlie quantitative prediction of water and gas movement, but constraining these properties typically requires multiple time-consuming laboratory methods. The estimation of two-phase flow properties (van Genuchten parameters, porosity, and intrinsic permeability) is illustrated in cores of vitric nonwelded volcanic tuff using Bayesian parameter estimation that fits numerical models to observations from spontaneous imbibition experiments. The uniqueness and correlation of the estimated parameters is explored using different modeling assumptions and subsets of the observed data. The resulting estimation process is sensitive to both moisture retention and relative permeability functions, thereby offering a comprehensive method for constraining both functions. The data collected during this relatively simple laboratory experiment, used in conjunction with a numerical model and a global optimizer, result in a viable approach for augmenting more traditional capillary pressure data obtained from hanging water column, membrane plate extractor, or mercury intrusion methods. This method may be useful when imbibition rather than drainage parameters are sought, when larger samples (e.g., including heterogeneity or fractures) need to be tested that cannot be accommodated in more traditional methods, or when in educational laboratory settings.

More Details

RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Simo, Eric K.; Herold, Philipp H.; Keller, Andreas K.; Lommerzheim, Andree L.; Matteo, Edward N.; Hadgu, Teklu H.; Jayne, Richard S.; Kuhlman, Kristopher L.; Mills, Melissa M.

The construction of deep geological repositories (DGR) in salt formations requires penetrating through naturally sealing geosphere layers. While the emplaced nuclear waste is primarily protected by the containment-providing rock zone (CRZ), technical barriers are required, for example during handling. For closure geotechnical barriers seal the repository along the accesses against water or solutions from outside and the possible emission paths for radionuclides contained inside. As these barriers must ensure maintenance-free function on a long-term basis, they typically comprise a set of specialized elements with diversified functions that may be used redundantly. The effects of the individual elements are coordinated so that they are collectively referred to as the Engineered Barrier System (EBS).

More Details

Temperature and Pressure Dependence of Salt-Brine Dihedral Angles in the Subsurface

Langmuir

Rimsza, Jessica R.; Kuhlman, Kristopher L.

Elevated temperature and pressure in the earth's subsurface alters the permeability of salt formations, due to changing properties of the salt-brine interface. Molecular dynamics (MD) simulations are used to investigate the mechanisms of temperature and pressure dependence of liquid-solid interfacial tensions of NaCl, KCl, and NaCl-KCl brines in contact with (100) salt surfaces. Salt-brine dihedral angles vary between 55 and 76° across the temperature (300-450 K) and pressure range (0-150 MPa) evaluated. Temperature-dependent brine composition results in elevated dihedral angles of 65-80°, which falls above the reported salt percolation threshold of 60°. Mixed NaCl-KCl brine compositions increased this effect. Elevated temperatures excluded dissolved Na+ ions from the interface, causing the strong temperature dependence of the liquid-solid interfacial tension and the resulting dihedral angle. Therefore, at higher temperature, pressure, and brine concentrations Na-Cl systems may underpredict the dihedral angle. Higher dihedral angles in more realistic mixed brine systems maintain low permeability of salt formations due to changes in the structure and energetics of the salt-brine interface.

More Details

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Stauffer, Phil S.; Boukhalfa, Hakim B.; Guiltinan, Eric J.; Rahn, Thom R.; Weaver, Doug W.; Otto, Shawn O.; Davis, Jon D.; Rutqvist, Jonny R.; Wu, Yuxin W.; Hu, Mengsu H.; Wang, Jiannan W.

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny R.; Guglielmi, Yves G.; Sasaki, Tsubasa S.; Deng, Hang D.; Li, Pei L.; Steefel, Carl S.; Tournassat, Christophe T.; Xu, Hao X.; Babhulgaonkar, Shaswat B.; Birkholzer, Jens T.; Sauer, Kirsten B.; Caporuscio, Florie C.; Rock, Marlena J.; Zavarin, Mavrik Z.; Wolery, Thomas J.; Chang, Elliot C.; Wainwright, Haruko W.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

Uncoupling Electrokinetic Flow Solutions

Mathematical Geosciences

Kuhlman, Kristopher L.; Malama, Bwalya

The continuum-scale electrokinetic porous-media flow and excess charge redistribution equations are uncoupled using eigenvalue decomposition. The uncoupling results in a pair of independent diffusion equations for “intermediate” potentials subject to modified material properties and boundary conditions. The fluid pressure and electrostatic potential are then found by recombining the solutions to the two intermediate uncoupled problems in a matrix-vector multiplication. Expressions for the material properties or source terms in the intermediate uncoupled problem may require extended precision or careful rewriting to avoid numerical cancellation, but the solutions themselves can typically be computed in double precision. The approach works with analytical or gridded numerical solutions and is illustrated through two examples. The solution for flow to a pumping well is manipulated to predict streaming potential and electroosmosis, and a periodic one-dimensional analytical solution is derived and used to predict electroosmosis and streaming potential in a laboratory flow cell subjected to low frequency alternating current and pressure excitation. The examples illustrate the utility of the eigenvalue decoupling approach, repurposing existing analytical solutions or numerical models and leveraging solutions that are simpler to derive for coupled physics.

More Details

Spontaneous Imbibition Tests and Parameter Estimation in Volcanic Tuff

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

We present a dynamic laboratory spontaneous imbibition test and interpretation method, demonstrated on volcanic tuff samples from the Nevada National Security Site. The method includes numerical inverse modeling to quantify uncertainty of estimated two-phase fluid flow properties. As opposed to other approaches requiring multiple different laboratory instruments, the dynamic imbibition method simultaneously estimates capillary pressure and relative permeability from one test apparatus.

More Details

Salt International Collaborations FY2021 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.; Stein, Emily S.; Gross, Michael B.

This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.

More Details

Utilizing Environmental Tracers to Reduce Groundwater Flow and Transport Model Parameter Uncertainties

Water Resources Research

Thiros, Nicholas E.; Gardner, W.P.; Kuhlman, Kristopher L.

Non-uniqueness in groundwater model calibration is a primary source of uncertainty in groundwater flow and transport predictions. In this study, we investigate the ability of environmental tracer information to constrain groundwater model parameters. We utilize a pilot point calibration procedure conditioned to subsets of observed data including: liquid pressures, tritium (3H), chlorofluorocarbon-12 (CFC-12), and sulfur hexafluoride (SF6) concentrations; and groundwater apparent ages inferred from these environmental tracers, to quantify uncertainties in the heterogeneous permeability fields and infiltration rates of a steady-state 2-D synthetic aquifer and a transient 3-D model of a field site located near Riverton, Wyoming (USA). To identify the relative data worth of each observation data type, the post-calibration uncertainties of the optimal parameters for a given observation subset are compared to that from the full observation data set. Our results suggest that the calibration-constrained permeability field uncertainties are largest when liquid pressures are used as the sole calibration data set. We find significant reduction in permeability uncertainty and increased predictive accuracy when the environmental tracer concentrations, rather than apparent groundwater ages, are used as calibration targets in the synthetic model. Calibration of the Riverton field site model using environmental tracer concentrations directly produces infiltration rate estimates with the lowest uncertainties, however; permeability field uncertainties remain similar between the environmental tracer concentration and apparent groundwater age calibration scenarios. This work provides insight on the data worth of environmental tracer information to calibrate groundwater models and highlights potential benefits of directly assimilating environmental tracer concentrations into model parameter estimation procedures.

More Details

Multicontinuum Flow Models for Assessing Two-Phase Flow in Containment Science

Kuhlman, Kristopher L.; Heath, Jason

We present a new pre-processor tool written in Python that creates multicontinuum meshes for PFLOTRAN to simulate two-phase flow and transport in both the fracture and matrix continua. We discuss the multicontinuum modeling approach to simulate potentially mobile water and gas in the fractured volcanic tuffs at Aqueduct Mesa, at the Nevada National Security Site.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Heterogeneous multiphase flow properties of volcanic rocks and implications for noble gas transport from underground nuclear explosions

Vadose Zone Journal

Heath, Jason; Kuhlman, Kristopher L.; Broome, Scott T.; Wilson, Jennifer E.; Malama, Bwalya

Of interest to the Underground Nuclear Explosion Signatures Experiment are patterns and timing of explosion-generated noble gases that reach the land surface. The impact of potentially simultaneous flow of water and gas on noble gas transport in heterogeneous fractured rock is a current scientific knowledge gap. This article presents field and laboratory data to constrain and justify a triple continua conceptual model with multimodal multiphase fluid flow constitutive equations that represents host rock matrix, natural fractures, and induced fractures from past underground nuclear explosions (UNEs) at Aqueduct and Pahute Mesas, Nevada National Security Site, Nevada, USA. Capillary pressure from mercury intrusion and direct air–water measurements on volcanic tuff core samples exhibit extreme spatial heterogeneity (i.e., variation over multiple orders of magnitude). Petrographic observations indicate that heterogeneity derives from multimodal pore structures in ash-flow tuff components and post-depositional alteration processes. Comparisons of pre- and post-UNE samples reveal different pore size distributions that are due in part to microfractures. Capillary pressure relationships require a multimodal van Genuchten (VG) constitutive model to best fit the data. Relative permeability estimations based on unimodal VG fits to capillary pressure can be different from those based on bimodal VG fits, implying the choice of unimodal vs. bimodal fits may greatly affect flow and transport predictions of noble gas signatures. The range in measured capillary pressure and predicted relative permeability curves for a given lithology and between lithologies highlights the need for future modeling to consider spatially distributed properties.

More Details

Pore-Scale Modeling of Electrokinetics in Geomaterials

Transport in Porous Media

Priya, Pikee; Kuhlman, Kristopher L.; Aluru, Narayana R.

Pore-scale finite-volume continuum models of electrokinetic processes are used to predict the Debye lengths, velocity, and potential profiles for two-dimensional arrays of circles, ellipses and squares with different orientations. The pore-scale continuum model solves the coupled Navier–Stokes, Poisson, and Nernst–Planck equations to characterize the electro-osmotic pressure and streaming potentials developed on the application of an external voltage and pressure difference, respectively. This model is used to predict the macroscale permeabilities of geomaterials via the widely used Carmen–Kozeny equation and through the electrokinetic coupling coefficients. The permeability results for a two-dimensional X-ray tomography-derived sand microstructure are within the same order of magnitude as the experimentally calculated values. The effect of the particle aspect ratio and orientation on the electrokinetic coupling coefficients and subsequently the electrical and hydraulic tortuosity of the porous media has been determined. These calculations suggest a highly tortuous geomaterial can be efficient for applications like decontamination and desalination.

More Details

Generic FEPs Catalogue and Salt Knowledge Archive

Freeze, Geoffrey A.; Sevougian, David S.; Kuhlman, Kristopher L.; Gross, Michael B.; Wolf, Jens W.; Buhmann, Dieter B.; Bartol, Jeroen B.; Leigh, Christi D.; Monig, Jorg M.

This report describes the development of a comprehensive catalogue of generic features, events, and processes (FEPs) that are potentially important for the post-closure performance of a repository for high-level radioactive waste (HLW) and spent nuclear fuel (SNF) in salt (halite) host rock. The FEPs and other supporting information have been entered into a “SaltFEP” Database. The generic salt repository FEPs include consideration of relevant FEPs from a number of U.S., Dutch, German, and international FEP lists and should be a suitable starting point for any repository program in salt host rock. The salt FEP catalogue and database employ a FEP classification matrix approach that is based on the concept that a FEP is typically a process or event acting upon or within a feature. The FEP matrix provides a two-dimensional structure consisting of a Features/Components axis that defines the “rows” and a Processes/Events axis that defines the “columns” of the matrix. The design of the FEP classification matrix is consistent with repository performance assessment – the Features/Components axis is organized vertically to generally correspond to the direction of potential radionuclide migration (from the waste to the biosphere) and the Processes/Events axis is designed to represent the common two-way couplings between thermal processes and other processes (such as thermal-mechanical or thermal-hydrologic processes). Related FEPs can be easily identified – related FEPs will typically be grouped in a single matrix cell or aligned along a common row (Feature/Component) or column (Process/Event). The online SaltFEP database can be downloaded from www.saltfep.org. It contains the FEP matrix, the FEPs, and the associated processes for each FEP. It provides a starting point to create and document site-specific individual FEPs. Furthermore, the FEP matrix is connected to the Salt Knowledge Archive (SKA), a database of about 20,000 references and documents representing the historical knowledge on radioactive disposal in salt. This work is the result of an ongoing collaboration between researchers in the U.S., the Netherlands, and Germany, and supports the NEA Salt Club Mandate. It builds upon prior work which is documented.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn O.; Dozier, Brian D.; Weaver, Doug W.; Stauffer, Phil S.; Guiltinan, Eric J.; Boukhalfa, Hakim B.; Rahn, Thom R.; Wu, Yuxin W.; Rutqvist, Jonny R.; Hu, Mengsu H.; Crandall, Dustin C.

Abstract not provided.

Results 1–50 of 230
Results 1–50 of 230