ChemLab? ? Twenty Years of Developing Microfabricated gas Analyzer for Chemical Detection
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lab on a Chip
A small, consumable-free, low-power, ultra-high-speed comprehensive GC×GC system consisting of microfabricated columns, nanoelectromechanical system (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator is demonstrated. The separation of a highly polar 29-component mixture covering a boiling point range of 46 to 253 °C on a pair of microfabricated columns using a Staiger valve manifold in less than 7 seconds, and just over 4 seconds after the ensemble holdup time is demonstrated with a downstream FID. The analysis time of the second dimension was 160 ms, and peak widths in the second dimension range from 10-60 ms. A peak capacity of just over 300 was calculated for a separation of just over 6 s. Data from a continuous operation testing over 40 days and 20000 runs of the GC×GC columns with the NEMS resonators using a 4-component test set is presented. The GC×GC-NEMS resonator system generated second-dimension peak widths as narrow as 8 ms with no discernable peak distortion due to under-sampling from the detector.
Analytical Sciences
We describe for the first time hydrogen bonded acid (HBA) polymer, poly[methyl[3-(2-hydroxyl, 4,6-bistrifluoromethyl)- phenyl]propylsiloxane], (DKAP), as stationary phase for gas chromatography (μGC) of organophosphate (OP), chemical warfare agent (CWA) surrogates, dimethylmethylphosphonate (DMMP), diisopropylmethylphosphonate (DIMP), diethylmethylphosphonate (DEMP), and trimethylphosphate (TMP), with high selectivity. Absorption of OPs to DKAP was one-to-several orders of magnitude higher relative to commercial polar, mid-polar, and nonpolar stationary phases. We also present for the first-time thermodynamic studies on the absorption of OP vapors and quantitative binding energy data for interactions with various stationary phases. These data help to identify the best pair of hetero-polar columns for a two-dimensional GC system, employing a nonpolar stationary phase as GC1 and DKAP as the GC2 stationary phase, for selective and rapid field detection of CWAs.
Proceedings of SPIE - The International Society for Optical Engineering
Gas Chromatography (GC) is routinely used in the laboratory to temporally separate chemical mixtures into their constituent components for improved chemical identification. This paper will provide a overview of more than twenty years of development of one-dimensional field-portable micro GC systems, highlighting key experimental results that illustrate how a reduction in false alarm rate (FAR) is achieved in real-world environments. Significantly, we will also present recent results on a micro two-dimensional GC (micro GCxGC) technology. This ultra-small system consists of microfabricated columns, NanoElectroMechanical System (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator. The separation of a 29-component polar mixture in less than 7 seconds is demonstrated along with peak widths in the second dimension ranging from 10-60 ms. For this system, a peak capacity of just over 300 was calculated for separation in about 6 s. This work has important implications for field detection, to drastically reduce FAR and significantly improve chemical selectivity and identification. This separation performance was demonstrated with the NEMS resonator and bench scale FID. But other detectors, suitably fast and sensitive can work as well. Recent research has shown that the identification power of GCxGC-FID can match that of GC-MS. This result indicates a path to improved size, weight, power, and performance in micro GCxGC systems outfitted with relatively non-specific, lightweight detectors. We will briefly discuss the performance of possible options, such as the pulsed discharge helium ionization detector (PDHID) and miniature correlation ion mobility spectrometer (mini-CIMS).
Abstract not provided.
Abstract not provided.
Colloids and Surfaces B: Biointerfaces
Controlling the traffic of molecules and ions across membranes is a critical feature in a number of biologically relevant processes and highly desirable for the development of technologies based on membrane materials. In this paper, ion transport behavior of hybrid lipid/polymer membranes was studied in the absence and presence of ion transfer agents. A pH-sensitive fluorophore was used to investigate ion (H+/OH−) permeability across hybrid lipid/polymer membranes as a function of the fraction of amphiphilic block copolymer. It was observed that vesicles with intermediate lipid/polymer ratios tend to be surprisingly more permeable to ion transport than the pure lipid or pure polymer vesicles. Hybrid vesicle permeability could be further modulated with valinomycin, nigericin, or gramicidin A, which significantly expedite the dissipation of externally-imposed pH gradients by facilitating the transport of the rate-limiting co-ions (e.g. K+) ions across the membrane. For gramicidin A, ion permeability decreased with increasing polymer mole fraction, and the method of introduction of gramicidin A into the membrane played an important role. Strategies to incorporate biofunctional molecules and facilitate their activity in synthetic systems are highly desirable for developing artificial organelles or other synthetic compartmentalized structures requiring control over molecular traffic across biomimetic membranes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Micromachines
Miniature ultrasonic lysis for biological sample preparation is a promising technique for efficient and rapid extraction of nucleic acids and proteins from a wide variety of biological sources. Acoustic methods achieve rapid, unbiased, and efficacious disruption of cellular membranes while avoiding the use of harsh chemicals and enzymes, which interfere with detection assays. In this work, a miniature acoustic nucleic acid extraction system is presented. Using a miniature bulk acoustic wave (BAW) transducer array based on 36° Y-cut lithium niobate, acoustic waves were coupled into disposable laminate-based microfluidic cartridges. To verify the lysing effectiveness, the amount of liberated ATP and the cell viability were measured and compared to untreated samples. The relationship between input power, energy dose, flow-rate, and lysing efficiency were determined. DNA was purified on-chip using three approaches implemented in the cartridges: a silica-based sol-gel silica-bead filled microchannel, nucleic acid binding magnetic beads, and Nafion-coated electrodes. Using E. coli, the lysing dose defined as ATP released per joule was 2.2× greater, releasing 6.1× more ATP for the miniature BAW array compared to a bench-top acoustic lysis system. An electric field-based nucleic acid purification approach using Nafion films yielded an extraction efficiency of 69.2% in 10 min for 50 μL samples.
Abstract not provided.
Journal of Radiation Research
Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here the microfabrication of gadolinium (Gd) conversion material-based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation-induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-doped aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm 2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and K α,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.
Abstract not provided.
Abstract not provided.
Neutron sensing is critical in civilian, military, industrial, biological, medical, basic research, and environmental applications. Conventional neutron sensors are limited by size, weight, cost, portability, and helium supply. Here the microfabrication of Gd conversion material-based heterojunction diodes is described for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICE). Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation-induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-doped aluminum cap layer atop Gd. Resultant coatings were stable for at least six years demonstrating excellent product shelf life. Depositing Gd on the diode surface eliminated air gap, leading to improved efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICE with energies of 72, 132, and 174 keV. Results are reported on neutron reflection and moderation by polyethylene for enhanced sensitivity and g- and X-ray elimination for improved specificity. Optimal Gd thickness was 10.4 um with 300 um thick partially depleted diode of 300 mm2 active surface area. Fast detection within 10 minutes at a neutron source-to-diode distance of 11.7 cm was achieved using this configuration. All ICE energies along with g-ray and Ka X-ray were modeled to emphasize correlations between experiment and theory and to calculate efficiencies. Semiconductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank Edward Cole, David Wheeler, Robert Koudelka, and Lyle Brunke for productive interactions and materials support.
Abstract not provided.
Journal of Peptide Science
Evaluating the stability of coupling reagents, quality control (QC), and surface functionalization metrology are all critical to the production of high quality peptide microarrays. We describe a broadly applicable screening technique for evaluating the fidelity of solid phase peptide synthesis (SPPS), the stability of activation/coupling reagents, and a microarray surface metrology tool. This technique was used to assess the stability of the activation reagent 1-{[1-(Cyano-2-ethoxy-2-oxo-ethylidenaminooxy)dimethylamino-morpholinomethylene]}methaneaminiumHexafluorophosphate (COMU) (Sigma-Aldrich, St. Louis, MO, USA) by SPPS of Leu-Enkephalin (YGGFL) or the coupling of commercially synthesized YGGFL peptides to (3-aminopropyl)triethyoxysilane-modified glass surfaces. Coupling efficiency was quantitated by fluorescence signaling based on immunoreactivity of the YGGFL motif. It was concluded that COMU solutions should be prepared fresh and used within 5 h when stored at ∼23 °C and not beyond 24 h if stored refrigerated, both in closed containers. Caveats to gauging COMU stability by absorption spectroscopy are discussed. Commercial YGGFL peptides needed independent QC, due to immunoreactivity variations for the same sequence synthesized by different vendors. This technique is useful in evaluating the stability of other activation/coupling reagents besides COMU and as a metrology tool for SPPS and peptide microarrays.
Parylene C is used in a device because of its conformable deposition and other advantages. Techniques to study Parylene C aging were developed, and "lessons learned" that could be utilized for future studies are the result of this initial study. Differential Scanning Calorimetry yielded temperature ranges for Parylene C aging as well as post-deposition treatment. Post-deposition techniques are suggested to improve Parylene C performance. Sample preparation was critical to aging regimen. Short-term (%7E40 days) aging experiments with free standing and ceramic-supported Parylene C films highlighted "lessons learned" which stressed further investigations in order to refine sample preparation (film thickness, single sided uniform coating, machine versus laser cutting, annealing time, temperature) and testing issues ("necking") for robust accelerated aging of Parylene C.
Abstract not provided.
Abstract not provided.
Engineered nanomaterials (ENMs) are increasingly being used in commercial products, particularly in the biomedical, cosmetic, and clothing industries. For example, pants and shirts are routinely manufactured with silver nanoparticles to render them 'wrinkle-free.' Despite the growing applications, the associated environmental health and safety (EHS) impacts are completely unknown. The significance of this problem became pervasive within the general public when Prince Charles authored an article in 2004 warning of the potential social, ethical, health, and environmental issues connected to nanotechnology. The EHS concerns, however, continued to receive relatively little consideration from federal agencies as compared with large investments in basic nanoscience R&D. The mounting literature regarding the toxicology of ENMs (e.g., the ability of inhaled nanoparticles to cross the blood-brain barrier; Kwon et al., 2008, J. Occup. Health 50, 1) has spurred a recent realization within the NNI and other federal agencies that the EHS impacts related to nanotechnology must be addressed now. In our study we proposed to address critical aspects of this problem by developing primary correlations between nanoparticle properties and their effects on cell health and toxicity. A critical challenge embodied within this problem arises from the ability to synthesize nanoparticles with a wide array of physical properties (e.g., size, shape, composition, surface chemistry, etc.), which in turn creates an immense, multidimensional problem in assessing toxicological effects. In this work we first investigated varying sizes of quantum dots (Qdots) and their ability to cross cell membranes based on their aspect ratio utilizing hyperspectral confocal fluorescence microscopy. We then studied toxicity of epithelial cell lines that were exposed to different sized gold and silver nanoparticles using advanced imaging techniques, biochemical analyses, and optical and mass spectrometry methods. Finally we evaluated a new assay to measure transglutaminase (TG) activity; a potential marker for cell toxicity.
Abstract not provided.
There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.
Sensors
Abstract not provided.
Journal of Biosensors and Bioelectronics
The excitement surrounding the marriage of biosensors and nanotechnology is palpable even from a cursory examination of the scientific literature. Indeed, the word “nano” might be in danger of being overused and reduced to a cliché, although probably essential for publishing papers or securing research funding. The biosensor literature is littered with clever or catchy acronyms, birds being apparently favored (“CANARY”, “SPARROW”), quite apart from “electronic tongue,” “electronic nose,” and so on. Although biosensors have been around since glucose monitors were commercialized in the 1970s, the transition of laboratory research and innumerable research papers on biosensors into the world of commerce has lagged. There are several reasons for this phenomenon including the infamous “valley of death” afflicting entrepreneurs emerging from academic environment into the industrial world, where the rules for success can be radically different. In this context, musings on biosensors and especially nanobiosensors in an open access journal such as Journal of Biosensors and Bioelectronics is topical and appropriate especially since market surveys of biosensors are prohibitively expensive, sometimes running into thousands of dollars for a single copy. The contents and predictions of market share for biosensors in these reports also keep changing every time a report is published. Not only that, the market share projections for biosensors differs considerably amongst various reports. An editorial provides the opportunity to offer personal opinions and perhaps stimulate debate on a particular topic. In this sense, editorials are a departure from the rigor of a research paper. This editorial is no exception. With this preamble, it is worthwhile to stop and ponder the status of commercial biosensors and nanobiosensors.
I used supramolecular self-assembling cyanine and the polyamine spermine binding to Escherichia coli genomic DNA as a model for DNA collapse during high throughput screening. Polyamine binding to DNA converts the normally right handed B-DNA into left handed Z-DNA conformation. Polyamine binding to DNA was inhibited by the supramolecular self-assembling cyanine. Self-assembly of cyanine upon DNA scaffold was likewise competitively inhibited by spermine as signaled by fluorescence quench from DNA-cyanine ensemble. Sequence of DNA exposure to cyanine or spermine was critical in determining the magnitude of fluorescence quench. Methanol potentiated spermine inhibition by >10-fold. The IC{sub 50} for spermine inhibition was 0.35 {+-} 0.03 {micro}M and the association constant Ka was 2.86 x 10{sup -6}M. Reversibility of the DNA-polyamine interactions was evident from quench mitigation at higher concentrations of cyanine. System flexibility was demonstrated by similar spermine interactions with {lambda}DNA. The choices and rationale regarding the polyamine, the cyanine dye as well as the remarkable effects of methanol are discussed in detail. Cyanine might be a safer alternative to the mutagenic toxin ethidium bromide for investigating DNA-drug interactions. The combined actions of polyamines and alcohols mediate DNA collapse producing hybrid bio-nanomaterials with novel signaling properties that might be useful in biosensor applications. Finally, this work will be submitted to Analytical Sciences (Japan) for publication. This journal published our earlier, related work on cyanine supramolecular self-assembly upon a variety of nucleic acid scaffolds.
ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.
Abstract not provided.
Sensors and Actuators B
Abstract not provided.
Medical Laboratory Observer (MLO)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Combinatorial Chemistry & Highthroughput Screening
Abstract not provided.
Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware for field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.