Using SciVal and Scopus to Analyze Research Impact at a National Lab
Abstract not provided.
Abstract not provided.
Geophysics
Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross-cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long-term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures-knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electrical conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. This approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity - the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SEG Technical Program Expanded Abstracts
We investigate through numerical simulation the usefulness of DC resistivity data for characterizing subsurface fractures with elevated electrical conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the borehole casing behaves electrically as a spatially extended line source, efficiently energizing the fractures with a steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: a local perturbation in the electric potential proximal the fracture set, with limited far-field expression; and, an overall reduction in the electric potential along the entire length of borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measureable effect that can be observed far from fractures themselves, at distances where the local perturbations in the electric potential around the fractures are imperceptible. Under these conditions, our results suggest that far-field, time-lapse measurements of DC potentials surrounding a borehole casing can be reasonably interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. Such an approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity - the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.
Abstract not provided.