Publications

Results 1–200 of 527
Skip to search filters

Dynamics of the gold–silicon eutectic reaction studied at limited length scales using in situ $\mathrm{TEM}$ and $\mathrm{STEM}$

Journal of Materials Research

Stangebye, Sandra S.; Lei, Changhui L.; Kinghorn, Aubri K.; robertson, ian m.; Kacher, Josh K.; Hattar, Khalid M.

We report the dynamics of the gold–silicon eutectic reaction in limited dimensions were studied using in situ transmission electron microscopy and scanning transmission electron microscopy heating experiments. The phase transformation, viewed in both plan-view and cross-section of the film, occurs through a complex combination of dislocation and grain boundary motion and diffusion of silicon along gold grain boundaries, which results in a dramatic change in the microstructure of the film. The conversion observed in cross-section shows that the eutectic mixture forms at the Au–Si interface and proceeds into the Au film at a discontinuous growth rate. This complex process can lead to a variety of microstructures depending on sample geometry, heating temperature, and the ratio of gold to silicon which was found to have the largest impact on the eutectic microstructure. The eutectic morphology varied from dendrites to hollow rectangular structures to Au–Si eutectic agglomerates with increasing silicon to gold ratio.

More Details

Measuring sub-surface spatially varying thermal conductivity of silicon implanted with krypton

Journal of Applied Physics

Pfeifer, Thomas W.; Tomko, John A.; Hoglund, Eric H.; Scott, Ethan A.; Hattar, Khalid M.; Huynh, Kenny H.; Liao, Michael L.; Goorsky, Mark G.; Hopkins, Patrick E.

The thermal properties of semiconductors following exposure to ion irradiation are of great interest for the cooling of electronic devices; however, gradients in composition and structure due to irradiation often make the measurement difficult. Furthermore, the nature of spatial variations in thermal resistances due to spatially varying ion irradiation damage is not well understood. In this work, we develop an advancement in the analysis of time-domain thermoreflectance to account for spatially varying thermal conductivity in a material resulting from a spatial distribution of defects. We then use this method to measure the near-surface (≲1 μm) thermal conductivity of silicon wafers irradiated with Kr+ ions, which has an approximate Gaussian distribution centered 260 nm into the sample. Our numerical analysis presented here allows for the spatial gradient of thermal conductivity to be extracted via what is fundamentally a volumetric measurement technique. We validate our findings via transmission electron microscopy, which is able to confirm the spatial variation of the sub-surface silicon structure, and provide additional insight into the local structure resulting from the effects of ion bombardment. Thermal measurements found the ion stopping region to have a nearly 50x reduction in thermal conductivity as compared to pristine silicon, while TEM showed the region was not fully amorphized. Our results suggest this drastic reduction in silicon thermal conductivity is primarily driven by structural defects in crystalline regions along with boundary scattering between amorphous and crystalline regions, with a negligible contribution being due to implanted krypton ions themselves.

More Details

New Total-Ionizing-Dose Resistant Data Storing Technique for NAND Flash Memory

IEEE Transactions on Device and Materials Reliability

Buddhanoy, Matchima B.; Sakib, Sadman S.; Surendranathan, Umeshwarnath S.; Wasiolek, Maryla W.; Hattar, Khalid M.; Ray, Biswajit R.

This paper describes a new non-charge-based data storing technique in NAND flash memory called watermark that encodes read-only data in the form of physical properties of flash memory cells. Unlike traditional charge-based data storing method in flash memory, the proposed technique is resistant to total ionizing dose (TID) effects. To evaluate its resistance to irradiation effects, we analyze data stored in several commercial single-level-cell (SLC) flash memory chips from different vendors and technology nodes. These chips are irradiated using a Co-60 gamma-ray source array for up to 100 krad(Si) at Sandia National Laboratories. Experimental evaluation performed on a flash chip from Samsung shows that the intrinsic bit error rate (BER) of watermark increases from 0.8% for TID = 0 krad(Si) to 1% for TID = 100 krad(Si). Conversely, the BER of charge-based data stored on the same chip increases from 0% at TID = 0 krad(Si) to 1.5% at TID = 100 krad(Si). Overall, the results imply that the proposed technique may potentially offer significant improvements in data integrity relative to traditional charge-based data storage for very high radiation (TID > 100 krad(Si)) environments. These gains in data integrity relative to the charge-based data storage are useful in radiation-prone environments, but they come at the cost of increased write times and higher BERs before irradiation.

More Details

Sample Preparation and Experimental Design for In Situ Multi-Beam Transmission Electron Microscopy Irradiation Experiments

Journal of visualized experiments : JoVE

Clark, Trevor C.; Taylor, Caitlin A.; Barr, Christopher M.; Hattar, Khalid M.

There is a need to understand materials exposed to overlapping extreme environments such as high temperature, radiation, or mechanical stress. When these stressors are combined there may be synergistic effects that enable unique microstructural evolution mechanisms to activate. Understanding of these mechanisms is necessary for the input and refinement of predictive models and critical for engineering of next generation materials. The basic physics and underlying mechanisms require advanced tools to be investigated. The in situ ion irradiation transmission electron microscope (I³TEM) is designed to explore these principles. To quantitatively probe the complex dynamic interactions in materials, careful preparation of samples and consideration of experimental design is required. Particular handling or preparation of samples can easily introduce damage or features that obfuscate the measurements. There is no one correct way to prepare a sample; however, many mistakes can be made. The most common errors and things to consider are highlighted within. The I³TEM has many adjustable variables and a large potential experimental space, therefore it is best to design experiments with a specific scientific question or questions in mind. Experiments have been performed on large number of sample geometries, material classes, and with many irradiation conditions. The following are a subset of examples that demonstrate unique in situ capabilities utilizing the I3TEM. Au nanoparticles prepared by drop casting have been used to investigate the effects of single ion strikes. Au thin films have been used in studies on the effects of multibeam irradiation on microstructure evolution. Zr films have been exposed to irradiation and mechanical tension to examine creep. Ag nanopillars were subjected to simultaneous high temperature, mechanical compression, and ion irradiation to study irradiation induced creep as well. These results impact fields including: structural materials, nuclear energy, energy storage, catalysis, and microelectronics in space environments.

More Details

Irradiation-induced grain boundary facet motion: In situ observations and atomic-scale mechanisms

Science Advances

Barr, Christopher M.; Chen, Elton Y.; Nathaniel, James E.; Lu, Ping L.; Adams, David P.; Dingreville, Remi P.; Boyce, Brad B.; Hattar, Khalid M.; Medlin, Douglas L.

Metals subjected to irradiation environments undergo microstructural evolution and concomitant degradation, yet the nanoscale mechanisms for such evolution remain elusive. Here, we combine in situ heavy ion irradiation, atomic resolution microscopy, and atomistic simulation to elucidate how radiation damage and interfacial defects interplay to control grain boundary (GB) motion. While classical notions of boundary evolution under irradiation rest on simple ideas of curvature-driven motion, the reality is far more complex. Focusing on an ion-irradiated Pt Σ3 GB, we show how this boundary evolves by the motion of 120° facet junctions separating nanoscale {112} facets. Our analysis considers the short- and mid-range ion interactions, which roughen the facets and induce local motion, and longer-range interactions associated with interfacial disconnections, which accommodate the intergranular misorientation. We suggest how climb of these disconnections could drive coordinated facet junction motion. These findings emphasize that both local and longer-range, collective interactions are important to understanding irradiation-induced interfacial evolution.

More Details

Compositional Effects of Additively Manufactured Refractory High‐Entropy Alloys under High‐Energy Helium Irradiation

Nanomaterials

Lang, Eric J.; Burns, Kory; Wang, Yongqiang; Kotula, Paul G.; Kustas, Andrew K.; Rodriguez, Sal; Aitkaliyeva, Assel; Hattar, Khalid M.

High‐Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance. In this letter, we investigate the response of additively manufactured refractory high‐entropy alloys (RHEAs) to helium (He) ion bombardment. Through analytical microscopy studies, we show the interplay between the alloy composition and the He bubble size and density to demonstrate how increasing the compositional complexity can limit the He bubble effects, but care must be taken in selecting the appropriate constituent elements.

More Details

Friction stir welding and self-ion irradiation effects on microstructure and mechanical properties changes within oxide dispersion strengthened steel $\mathrm{MA956}$

Journal of Nuclear Materials

Getto, E.G.; Johnson, M.G.; Maughan, M.M.; Nathan, N.N.; McMahan, J.M.; Baker, B.B.; Knipling, K.K.; Briggs, S.B.; Hattar, Khalid M.; Swenson, M.J.S.

We report the joining process for oxide dispersion strengthened (ODS) alloys remains a key challenge facing the nuclear community. The microstructure and mechanical properties were characterized in the base material and friction stir welded ODS MA956 irradiated with 5 MeV Fe2+ ions from 400 to 500°C up to 25 dpa. Nanoindentation was performed to assess changes in hardness and yield stress, and the dispersed barrier hardening (DBH) model was applied to described results. A combination of scanning transmission electron microscopy (STEM) and atom probe tomography (APT) were used to assess evolution of the microstructure including dispersoids, network dislocations and dislocation loops, nanoclusters, and solid solution concentrations. Overall, softening was observed as a result of increased dose, which was exacerbated at 500°C. The formation and coarsening of new dispersoids was noted while nanoclusters tended to dissolve in the base material, and were not observed in the stir zone. Solute nanocluster evolution was identified as a primary driver of the changes in mechanical properties.

More Details

In situ ion irradiation of amorphous TiO2 nanotubes

Journal of Materials Research

Yang, Chao; Olsen, Tristan; Lau, Miu L.; Smith, Kassiopeia A.; Hattar, Khalid M.; Sen, Amrita; Wu, Yaqiao; Hou, Dewen; Narayanan, Badri; Long, Min; Wharry, Janelle P.; Xiong, Hui

Understanding of structural and morphological evolution in nanomaterials is critical in tailoring their functionality for applications such as energy conversion and storage. Here, we examine irradiation effects on the morphology and structure of amorphous TiO2 nanotubes in comparison with their crystalline counterpart, anatase TiO2 nanotubes, using high-resolution transmission electron microscopy (TEM), in situ ion irradiation TEM, and molecular dynamics (MD) simulations. Anatase TiO2 nanotubes exhibit morphological and structural stability under irradiation due to their high concentration of grain boundaries and surfaces as defect sinks. On the other hand, amorphous TiO2 nanotubes undergo irradiation-induced crystallization, with some tubes remaining only partially crystallized. The partially crystalline tubes bend due to internal stresses associated with densification during crystallization as suggested by MD calculations. These results present a novel irradiation-based pathway for potentially tuning structure and morphology of energy storage materials. Graphical abstract: [Figure not available: see fulltext.]

More Details

Total Ionizing Dose Effects on Long-Term Data Retention Characteristics of Commercial 3-D NAND Memories

IEEE Transactions on Nuclear Science

Buddhanoy, Matchima; Kumari, Preeti; Surendranathan, Umeshwarnath; Wasiolek, Maryla; Hattar, Khalid M.; Ray, Biswajit

This article evaluates the data retention characteristics of irradiated multilevel-cell (MLC) 3-D NAND flash memories. We irradiated the memory chips by a Co-60 gamma-ray source for up to 50 krad(Si) and then wrote a random data pattern on the irradiated chips to find their retention characteristics. The experimental results show that the data retention property of the irradiated chips is significantly degraded when compared to the un-irradiated ones. We evaluated two independent strategies to improve the data retention characteristics of the irradiated chips. The first method involves high-temperature annealing of the irradiated chips, while the second method suggests preprogramming the memory modules before deploying them into radiation-prone environments.

More Details

Total Ionizing Dose Effects on Read Noise of MLC 3-D NAND Memories

IEEE Transactions on Nuclear Science

Surendranathan, Umeshwarnath; Wasiolek, Maryla; Hattar, Khalid M.; Fleetwood, Daniel M.; Ray, Biswajit

This article analyzes the total ionizing dose (TID) effects on noise characteristics of commercial multi-level-cell (MLC) 3-D NAND memory technology during the read operation. The chips were exposed to a Co-60 gamma-ray source for up to 100 krad(Si) of TID. We find that the number of noisy cells in the irradiated chip increases with TID. Bit-flip noise was more dominant for cells in an erased state during irradiation compared to programmed cells.

More Details

Analytical Bit-Error Model of NAND Flash Memories for Dosimetry Application

IEEE Transactions on Nuclear Science

Kumari, Preeti; Surendranathan, Umeshwarnath; Wasiolek, Maryla; Hattar, Khalid M.; Bhat, Narayana; Ray, Biswajit

In this article, we provide an analytical model for the total ionizing dose (TID) effects on the bit error statistics of commercial flash memory chips. We have validated the model with experimental data collected by irradiating several commercial NAND flash memory chips from different technology nodes. We find that our analytical model can project bit errors at higher TID values [20 krad (Si)] from measured data at lower TID values [<1 krad (Si)]. Based on our model and the measured data, we have formulated basic design rules for using a commercial flash memory chip as a dosimeter. We discuss the impact of NAND chip-to-chip variability, noise margin, and the intrinsic errors on the dosimeter design using detailed experimentation.

More Details

In Situ TEM tensile testing of bicrystals with tailored misorientation angles

Acta Materialia

Kiani, Mehrdad T.; Gan, Lucia T.; Traylor, Rachel; Yang, Rui; Barr, Christopher M.; Hattar, Khalid M.; Fan, Jonathan A.; Wendy Gu, X.

Grain boundaries have complex structural features that influence strength, ductility and fracture in metals and alloys. Grain boundary misorientation angle has been identified as a key parameter that controls their mechanical behavior, but the effect of misorientation angle has been challenging to isolate in polycrystalline materials. Here, we describe the use of bicrystal Au thin films made using a rapid melt growth process to study deformation at a single grain boundary. Tensile testing is performed on bicrystals with different misorientation angles using in situ TEM, as well as on a single crystalline sample. Plastic deformation is initiated through dislocation nucleation from free surfaces. Grain boundary sliding is not observed, and failure occurs away from the grain boundary through plastic collapse in all cases. The failure behavior in these nanoscale bicrystals does not appear to depend on the misorientation angle or grain boundary energy but instead has a more complex dependence on sample surface structure and dislocation activity.

More Details

Assessment of Sandia's 2021 Pilot Program for Research Traineeships to Broaden and Diversify Fusion Energy Science: Development and Rapid Screening of Refractory Multi-Principal Elemental Composites for Plasma Facing Components

Flicker, Dawn G.; Carney, James P.; Cusentino, Mary A.; Hattar, Khalid M.; Steinkamp, Michael J.; Treadwell, LaRico J.

The Fusion Energy Sciences office supported “A Pilot Program for Research Traineeships to Broaden and Diversify Fusion Energy Sciences” at Sandia National Laboratories during the summer of 2021. This pilot project was motivated in part by the Fusion Energy Sciences Advisory Committee report observation that “The multidisciplinary workforce needed for fusion energy and plasma science requires that the community commit to the creation and maintenance of a healthy climate of diversity, equity, and inclusion, which will benefit the community as a whole and the mission of FES”. The pilot project was designed to work with North Carolina A&T (NCAT) University and leverage SNL efforts in FES to engage underrepresented students in developing and accessing advanced material solutions for plasma facing components in fusion systems. The intent was to create an environment conducive to the development of a sense of belonging amongst participants, foster a strong sense of physics identity among the participants, and provide financial support to enable students to advance academically while earning money. The purpose of this assessment is to review what worked well and lessons that can be learned. We reviewed implementation and execution of the pilot, describe successes and areas for improvement and propose a no-cost extension of the pilot project to apply these lessons and continue engagement activities in the summer of 2022.

More Details

Solar wind contributions to Earth’s oceans

Nature Astronomy

Daly, Luke; Lee, Martin R.; Hallis, Lydia J.; Ishii, Hope A.; Bradley, John P.; Bland, Phillip A.; Saxey, David W.; Fougerouse, Denis; Rickard, William D.A.; Forman, Lucy V.; Timms, Nicholas E.; Jourdan, Fred; Reddy, Steven M.; Salge, Tobias; Quadir, Zakaria; Christou, Evangelos; Cox, Morgan A.; Aguiar, Jeffrey A.; Hattar, Khalid M.; Monterrosa, Anthony; Keller, Lindsay P.; Christoffersen, Roy; Dukes, Catherine A.; Loeffler, Mark J.; Thompson, Michelle S.

The isotopic composition of water in Earth’s oceans is challenging to recreate using a plausible mixture of known extraterrestrial sources such as asteroids—an additional isotopically light reservoir is required. The Sun’s solar wind could provide an answer to balance Earth’s water budget. We used atom probe tomography to directly observe an average ~1 mol% enrichment in water and hydroxyls in the solar-wind-irradiated rim of an olivine grain from the S-type asteroid Itokawa. We also experimentally confirm that H+ irradiation of silicate mineral surfaces produces water molecules. These results suggest that the Itokawa regolith could contain ~20 l m−3 of solar-wind-derived water and that such water reservoirs are probably ubiquitous on airless worlds throughout our Galaxy. The production of this isotopically light water reservoir by solar wind implantation into fine-grained silicates may have been a particularly important process in the early Solar System, potentially providing a means to recreate Earth’s current water isotope ratios.

More Details

Pulsed electric current joining of oxide-dispersion-strengthened austenitic steels

Journal of Materials Science

Wang, Fei; Yan, Xueliang; Chen, Xin; Snyder, Nathan; Nastasi, Michael; Hattar, Khalid M.; Cui, Bai

The solid-state joining of oxide-dispersion-strengthened (ODS) austenitic steels was achieved using a pulsed electric current joining (PECJ) process. Microstructures of the austenitic grain structures and oxide dispersions in the joint areas were characterized using electron microscopy. Negligible grain growth was observed in austenitic grain structures, while slight coarsening of oxide dispersions occurred at a short holding time. The mechanisms of the PECJ process may involve three steps that occur simultaneously, including the sintering of mechanical alloying powders in the bonding layer, formation of oxide dispersions, and bonding of the mechanical alloying powders with the base alloy. The high hardness and irradiation resistance of ODS alloys were retained in the joint areas. This research revealed the fundamental mechanisms during the PECJ process, which is beneficial for its potential applications during the advanced manufacturing of ODS alloys.

More Details

The dynamic evolution of swelling in nickel concentrated solid solution alloys through in situ property monitoring

Applied Materials Today

Dennett, Cody A.; Dacus, Benjamin R.; Barr, Christopher M.; Clark, Trevor; Bei, Hongbin; Zhang, Yanwen; Short, Michael P.; Hattar, Khalid M.

Defects and microstructural features spanning the atomic level to the microscale play deterministic roles in the expressed properties of materials. Yet studies of material evolution in response to environmental stimuli most often correlate resulting performance with one dominant microstructural feature only. Here, the dynamic evolution of swelling in a series of Ni-based concentrated solid solution alloys under high-temperature irradiation exposure is observed using continuous, in situ measurements of thermoelastic properties in bulk specimens. Unlike traditional evaluation techniques which account only for volumetric porosity identified using electron microscopy, direct property evaluation provides an integrated response across all defect length scales. In particular, the evolution in elastic properties during swelling is found to depend significantly on the entire size spectrum of defects, from the nano- to meso-scales, some of which are not resolvable in imaging. Observed changes in thermal transport properties depend sensitively on the partitioning of electronic and lattice thermal conductivity. This emerging class of in situ experiments, which directly measure integrated performance in relevant conditions, provides unique insight into material dynamics otherwise unavailable using traditional methods.

More Details

Synthesis of magnesiowüstite nanocrystallites embedded in an amorphous silicate matrix via low energy multiple ion implantations

Planetary and Space Science

Young, Joshua M.; Byers, Todd A.; Lang, Eric J.; Singh, Satyabrata; Glass, Gary A.; Hattar, Khalid M.; Rout, Bibhudutta

A synthesis process is presented for experimentally simulating modifications in cosmic dust grains using sequential ion implantations or irradiations followed by thermal annealing. Cosmic silicate dust analogues were prepared via implantation of 20–80 ​keV Fe−, Mg−, and O− ions into commercially available p-type silicon (100) wafers. The as-implanted analogues are amorphous with a Mg/(Fe ​+ ​Mg) ratio of 0.5 tailored to match theoretical abundances in circumstellar dusts. Before the ion implantations were performed, Monte-Carlo-based ion-solid interaction codes were used to model the dynamic redistribution of the implanted atoms in the silicon substrate. 600 ​keV helium ion irradiation was performed on one of the samples before thermal annealing. Two samples were thermally annealed at a temperature appropriate for an M-class stellar wind, 1000 ​K, for 8.3 ​h in a vacuum chamber with a pressure of 1 ​× ​10−7 torr. The elemental depth profiles were extracted utilizing Rutherford Backscattering Spectrometry (RBS) in the samples before and after thermal annealing. X-ray diffraction (XRD) analysis was employed for the identification of various phases in crystalline minerals in the annealed analogues. Transmission electron microscopy (TEM) analysis was utilized to identify specific crystal structures. RBS analysis shows redistribution of the implanted Fe, Mg, and O after thermal annealing due to incorporation into the crystal structures for each sample type. XRD patterns along with TEM analysis showed nanocrystalline Mg and Fe oxides with possible incorporation of additional silicate minerals.

More Details

Comparing Neutron and Ion Irradiation by Atom Probe Tomography and In-situ Electron Microscopy [Slides]

Hattar, Khalid M.; Hattar, Khalid M.; Lang, Eric J.; Devaraj, A.D.; Devaraj, A.D.; Roach , C.R.; Roach , C.R.; Devaraj, A.D.; Roach , C.R.

Stainless steel TPBAR components undergo neutron radiation-induced segregation and dislocation loop formation. Comparison experiments with ion beams accelerate the damage, and visualize the damage process with in-situ microscopy. In-situ Au irradiation causes defect formation, but no elemental segregation.

More Details

Evidence for a high temperature whisker growth mechanism active in tungsten during in situ nanopillar compression

Nanomaterials

Jawaharram, Gowtham S.; Barr, Christopher M.; Hattar, Khalid M.; Dillon, Shen J.

A series of nanopillar compression tests were performed on tungsten as a function of temperature using in situ transmission electron microscopy with localized laser heating. Surface oxidation was observed to form on the pillars and grow in thickness with increasing temperature. Deformation between 850◦C and 1120◦C is facilitated by long-range diffusional transport from the tungsten pillar onto adjacent regions of the Y2O3-stabilized ZrO2 indenter. The constraint imposed by the surface oxidation is hypothesized to underly this mechanism for localized plasticity, which is generally the so-called whisker growth mechanism. The results are discussed in context of the tungsten fuzz growth mechanism in He plasma-facing environments. The two processes exhibit similar morphological features and the conditions under which fuzz evolves appear to satisfy the conditions necessary to induce whisker growth.

More Details

Nanostructured Oxide-Dispersion-Strengthened CoCrFeMnNi High-Entropy Alloys with High Thermal Stability

Advanced Engineering Materials

Zhang, Xiang; Wang, Fei; Yan, Xueliang; Li, Xing Z.; Hattar, Khalid M.; Cui, Bai

A nanostructured oxide-dispersion-strengthened (ODS) CoCrFeMnNi high-entropy alloy (HEA) is synthesized by a powder metallurgy process. The thermal stability, including the grain size and crystal structure of the HEA matrix and oxide dispersions, is carefully investigated by X-ray diffraction (XRD) and electron microscopy characterizations after annealing at 900 °C. The limited grain growth may be attributed to Zener pinning of yttria dispersions that impede the grain boundary mobility and diffusivity. The high hardness is caused by both the fine grain size and yttria dispersions, which are also retained after annealing at 900 °C. Herein, it is implied that the combination of ODS and HEA concepts may provide a new design strategy for the development of thermally stable nanostructured alloys for extreme environments.

More Details

Size-dependent radiation damage mechanisms in nanowires and nanoporous structures

Acta Materialia

Vizoso, Daniel; Kosmidou, Maria; Balk, T.J.; Hattar, Khalid M.; Deo, Chaitanya; Dingreville, Rémi

Nanostructures with a high density of interfaces, such as in nanoporous materials and nanowires, resist radiation damage by promoting the annihilation and migration of defects. This study details the size effect and origins of the radiation damage mechanisms in nanowires and nanoporous structures in model face-centered (gold) and body-centered (niobium) cubic nanostructures using accelerated multi-cascade atomistic simulations and in-situ ion irradiation experiments. Our results reveal three different size-dependent mechanisms of damage accumulation in irradiated nanowires and nanoporous structures: sputtering for very small nanowires and ligaments, the formation and accumulation of point defects and dislocation loops in larger nanowires, and a face-centered-cubic to hexagonal-close-packed phase transformation for a narrow range of wire diameters in the case of gold nanowires. Smaller nanowires and ligaments have a net effect of lowering the radiation damage as compared to larger wires that can be traced back to the fact that smaller nanowires transition from a rapid accumulation of defects to a saturation and annihilation mechanism at a lower dose than larger nanowires. These irradiation damage mechanisms are accompanied with radiation-induced surface roughening resulting from defect-surface interactions. Comparisons between nanowires and nanoporous structures show that the various mechanisms seen in nanowires provide adequate bounds for the defect accumulation mechanisms in nanoporous structures with the difference attributed to the role of nodes connecting ligaments in nanoporous structures. Taken together, our results shed light on the compounded, size-dependent mechanisms leading to the radiation resistance of nanowires and nanoporous structures.

More Details

Investigation of hardening mechanisms and size effects in proton-irradiated HT-9 steels

Journal of Nuclear Materials

Ajantiwalay, Tanvi; Nagel, Lauren; Maloy, Stuart; Hattar, Khalid M.; Mecholsky, John J.; Aitkaliyeva, Assel

Ferritic/martensitic steels, such as HT-9, are known for their complex microstructural features and mechanical properties. In this paper, in-situ micro-tensile tests and traditional fractography methods were utilized to study the fracture behavior of proton-irradiated HT-9 steels. First, to evaluate the viability of micro-tensile tests for nuclear material qualification process, meso‑tensile tests on as-received HT-9 steels were performed. Fracture mechanisms of unirradiated HT-9 steels at both length scales were compared and underlying mechanisms discussed. The direct comparison of micro- and meso‑scale data shows a distinctive size effect demonstrated by the increase in yield stress (YS). Upon completion of initial assessment, specimens were irradiated with 4 MeV+ protons to three fluences, all of which were lower than 0.01 displacements per atom (dpa). As expected, the YS increases with irradiation. However, at 7 × 10−3 dpa, the reversal of the trend was observed, and the YS exhibited sharp decline. We demonstrate that at lower length scales, grain structure has a more profound impact on the mechanical properties of irradiated materials, which provides information needed to fill in the gap in current understanding of the HT-9 fracture at different length scales.

More Details

Grain growth of nanocrystalline aluminum under tensile deformation: A combined in situ TEM and atomistic study

Materialia

Stangebye, Sandra; Zhang, Yin; Gupta, Saurabh; Hosseinian, Ehsan; Yu, Frank; Barr, Christopher; Hattar, Khalid M.; Pierron, Olivier; Zhu, Ting; Kacher, Josh

Nanocrystalline Al thin films have been strained in situ in a transmission electron microscope using two separate nanomechanical techniques involving a push-to-pull device and a microelectromechanical system (MEMS) device. Deformation-induced grain growth was observed to occur via stress-assisted grain boundary migration with extensive grain growth occurring in the necked region, indicating that the increase in local stress drives the boundary migration. Under applied tensile stresses close to the ultimate tensile strength of 450 MPa for a nanocrystalline Al specimen, measured boundary migration speeds are 0.2 – 0.7 nm s−1 for grains outside necked region and increases to 2.5 nm s−1 for grains within the necked region where the local estimated tensile stresses are elevated to around 630 MPa. By tracking grain boundary motion over time, molecular dynamics simulations showed qualitative agreement in terms of pronounced grain boundary migration with the experimental observations. The combined in situ observation and molecular dynamics simulation results underscore the important role of stress-driven grain growth in plastically deforming nanocrystalline metals, leading to intergranular fracture through predominant grain boundary sliding in regions with large localized deformation.

More Details

Radiation-Induced Error Mitigation by Read-Retry Technique for MLC 3-D NAND Flash Memory

IEEE Transactions on Nuclear Science

Kumari, Preeti; Surendranathan, Umeshwarnath; Wasiolek, Maryla; Hattar, Khalid M.; Bhat, Narayana P.; Ray, Biswajit

In this article, we have evaluated the Read-Retry (RR) functionality of the 3-D NAND chip of multilevel-cell (MLC) configuration after total ionization dose (TID) exposure. The RR function is typically offered in the high-density state-of-the-art NAND memory chips to recover data once the default memory read method fails to correct data with error correction codes (ECCs). In this work, we have applied the RR method on the irradiated 3-D NAND chip that was exposed with a Co-60 gamma-ray source for TID up to 50 krad (Si). Based on our experimental evaluation results, we have proposed an algorithm to efficiently implement the RR method to extend the radiation tolerance of the NAND memory chip. Our experimental evaluation shows that the RR method coupled with ECC can ensure data integrity of MLC 3-D NAND for TID up to 50 krad (Si).

More Details

Possibility of an integrated transmission electron microscope: enabling complex in-situ experiments

Journal of Materials Science

Hattar, Khalid M.; Jungjohann, Katherine L.

Abstract: Multimodal in-situ experiments are the wave of the future, as this approach will permit multispectral data collection and analysis during real-time nanoscale observation. In contrast, the evolution of technique development in the electron microscopy field has generally trended toward specialization and subsequent bifurcation into more and more niche instruments, creating a challenge for reintegration and backward compatibility for in-situ experiments on state-of-the-art microscopes. We do not believe this to be a requirement in the field; therefore, we propose an adaptive instrument that is designed to allow nearly simultaneous collection of data from aberration-corrected transmission electron microscopy (TEM), probe-corrected scanning transmission electron microscopy, ultrafast TEM, and dynamic TEM with a flexible in-situ testing chamber, where the entire instrument can be modified as future technologies are developed. The value would be to obtain a holistic understanding of the underlying physics and chemistry of the process-structure–property relationships in materials exposed to controlled extreme environments. Such a tool would permit the ability to explore, in-situ, the active reaction mechanisms in a controlled manner emulating those of real-world applications with nanometer and nanosecond resolution. If such a powerful tool is developed, it has the potential to revolutionize our materials understanding of nanoscale mechanisms and transients. Graphical Abstract: [Figure not available: see fulltext.].

More Details

The role of grain boundary character in solute segregation and thermal stability of nanocrystalline Pt-Au

Nanoscale

Barr, Christopher M.; Foiles, Stephen M.; Alkayyali, Malek; Mahmood, Yasir; Price, Patrick M.; Adams, David P.; Boyce, Brad B.; Abdeljawad, Fadi; Hattar, Khalid M.

Nanocrystalline (NC) metals suffer from an intrinsic thermal instability; their crystalline grains undergo rapid coarsening during processing treatments or under service conditions. Grain boundary (GB) solute segregation has been proposed to mitigate grain growth and thermally stabilize the grain structures of NC metals. However, the role of GB character in solute segregation and thermal stability of NC metals remains poorly understood. Herein, we employ high resolution microscopy techniques, atomistic simulations, and theoretical analysis to investigate and characterize the impact of GB character on segregation behavior and thermal stability in a model NC Pt-Au alloy. High resolution electron microscopy along with X-ray energy dispersive spectroscopy and automated crystallographic orientation mapping is used to obtain spatially correlated Pt crystal orientation, GB misorientation, and Au solute concentration data. Atomistic simulations of polycrystalline Pt-Au systems are used to reveal the plethora of GB segregation profiles as a function of GB misorientation and the corresponding impact on grain growth processes. With the aid of theoretical models of interface segregation, the experimental data for GB concentration profiles are used to extract GB segregation energies, which are then used to elucidate the impact of GB character on solute drag effects. Our results highlight the paramount role of GB character in solute segregation behavior. In broad terms, our approach provides future avenues to employ GB segregation as a microstructure design strategy to develop NC metallic alloys with tailored microstructures. This journal is

More Details

Probing thermal conductivity of subsurface, amorphous layers in irradiated diamond

Journal of Applied Physics

Scott, Ethan A.; Braun, Jeffrey L.; Hattar, Khalid M.; Sugar, Joshua D.; Gaskins, John T.; Goorsky, Mark; King, Sean W.; Hopkins, Patrick E.

In this study, we report on the thermal conductivity of amorphous carbon generated in diamond via nitrogen ion implantation (N 3 + at 16.5 MeV). Transmission electron microscopy techniques demonstrate amorphous band formation about the longitudinal projected range, localized approximately 7 μm beneath the sample surface. While high-frequency time-domain thermoreflectance measurements provide insight into the thermal properties of the near-surface preceding the longitudinal projected range depth, a complimentary technique, steady-state thermoreflectance, is used to probe the thermal conductivity at depths which could not otherwise be resolved. Through measurements with a series of focusing objective lenses for the laser spot size, we find the thermal conductivity of the amorphous region to be approximately 1.4 W m-1 K-1, which is comparable to that measured for amorphous carbon films fabricated through other techniques.

More Details

Exploring Coupled Extreme Environments via In-situ Transmission Electron Microscopy

Microscopy Today

Parrish, Riley J.; Bufford, Daniel C.; Frazer, David M.; Taylor, Caitlin T.; Gutierrez-Kolar, Jacob G.; Buller, Daniel L.; Boyce, Brad B.; Hattar, Khalid M.

In-situ transmission electron microscopy (TEM) provides an avenue to explore time-dependent nanoscale material changes induced by a wide range of environmental conditions that govern material performance and degradation. The In-situ Ion Irradiation TEM (I3TEM) at Sandia National Laboratories is a JEOL 2100 microscope that has been highly modified with an array of hardware and software that makes it particularly well suited to explore fundamental mechanisms that arise from coupled extreme conditions. Here, examples pertaining to multibeam ion irradiation, rapid thermal cycling, and nanomechanical testing on the I3TEM are highlighted, along with prospective advancements in the field of in-situ microscopy.

More Details

Defect annihilation in heavy ion irradiated polycrystalline gold

Materials Letters

Islam, Zahabul; Barr, Christopher M.; Hattar, Khalid M.; Haque, Aman

In this study, we explore the interaction of electron wind force (EWF) with defects originating from ion irradiation in-situ inside a transmission electron microscope. Nanocrystalline gold specimens were self-ion irradiated to a dose of 5 × 1015 ions/cm2 (45 displacement per atom) to generate a high density of displacement damage. We also developed a molecular dynamics simulation model to understand the associated atomic scale mechanisms. Both experiments and simulations show that the EWF can impart significant defect mobility even at low temperatures, resulting in the migration and elimination of defects in a few minutes. We propose that the EWF interacts with defects to create highly glissile Shockley partial dislocations, which makes the fast and low temperature defect annihilation possible.

More Details

In situ indentation and high cycle tapping deformation responses in a nanolaminate crystalline/amorphous metal composite

Materials Science and Engineering: A

Guo, Qianying; Gu, Yucong; Barr, Christopher M.; Koenig, Thomas; Hattar, Khalid M.; Li, Lin; Thompson, Gregory B.

The incorporation of nanostructured and amorphous metals into modern applications is reliant on the understanding of deformation and failure modes in constrained conditions. To study this, a 105 nm crystalline Cu/160 nm amorphous Cu45Zr55 (at.%) multilayer structure was fabricated with the two crystalline layers sputter deposited between the top-middle-bottom amorphous layers and prepared to electron transparency. The multilayer was then in situ indented either under a single load to a depth of ~ 100 nm (max load of ~ 100 μN) or held at 20 μN and then repeatedly indented with an additional 5 μN up to 20,000 cycles in a transmission electron microscope to compare the deformation responses in the nanolaminate. For the single indentation test, the multilayer showed serrated load-displacement behavior upon initial indentation inductive of shear banding. At an indentation depth of ~ 32 nm, the multilayer exhibited perfect plastic behavior and no strain hardening. Both indented and fatigue-indented films revealed diffraction contrast changes with deformation. Subsequent Automated Crystal Orientation Mapping (ACOM) measurements confirmed and quantified global texture changes in the crystalline layers with specifically identified grains revealing rotation. Using a finite element model, the in-plane displacement vectors under the indent mapped conditions where ACOM determined grain rotation was observed, indicating the stress flow induced grain rotation. The single indented Cu layers also exhibited evidence of deformation induced grain growth, which was not evident in the fatigue-indented Cu based multilayer. Finally, the single indented multilayer retained a significant plastic crater in the upper most amorphous layer that directly contacted the indenter; a negligible crater impression in the same region was observed in the fatigued tested multilayer. These differences are explained by the different loading methods, applied load, and deformation mechanisms experienced in the multilayers.

More Details

Ultrahigh temperature in situ transmission electron microscopy based bicrystal coble creep in Zirconia II: Interfacial thermodynamics and transport mechanisms

Acta Materialia

Grosso, Robson L.; Vikrant, K.S.N.; Feng, Lin; Muccillo, Eliana N.S.; Muche, Dereck N.F.; Jawaharram, Gowtham S.; Barr, Christopher M.; Monterrosa, Anthony M.; Castro, Ricardo H.R.; García, R.E.; Hattar, Khalid M.; Dillon, Shen J.

This work uses a combination of stress dependent single grain boundary Coble creep and zero-creep experiments to measure interfacial energies, along with grain boundary point defect formation and migration volumes in cubic ZrO2. These data, along with interfacial diffusivities measured in a companion paper are then applied to analyzing two-particle sintering. The analysis presented indicates that the large activation volume, v*=vf+vmprimarily derives from a large migration volume and suggests that the grain boundary rate limiting defects are delocalized, possibly due to electrostatic interactions between charge compensating defects. The discrete nature of the sintering and creep process observed in the small-scale experiments supports the hypothesis that grain boundary dislocations serve as sources and sinks for grain boundary point defects and facilitate strain during sintering and Coble creep. Model two-particle sintering experiments demonstrate that initial-stage densification follows interface reaction rate-limited kinetics.

More Details

Ultrahigh temperature in situ transmission electron microscopy based bicrystal coble creep in zirconia I: Nanowire growth and interfacial diffusivity

Acta Materialia

Vikrant, K.S.N.; Grosso, Robson L.; Feng, Lin; Muccillo, Eliana N.S.; Muche, Dereck N.F.; Jawaharram, Gowtham S.; Barr, Christopher M.; Monterrosa, Anthony M.; Castro, Ricardo H.R.; García, R.E.; Hattar, Khalid M.; Dillon, Shen J.

This work demonstrates novel in situ transmission electron microscopy-based microscale single grain boundary Coble creep experiments used to grow nanowires through a solid-state process in cubic ZrO2 between ≈ 1200 °C and ≈ 2100 °C. Experiments indicate Coble creep drives the formation of nanowires from asperity contacts during tensile displacement, which is confirmed by phase field simulations. The experiments also facilitate efficient measurement of grain boundary diffusivity and surface diffusivity. 10 mol% Sc2O3 doped ZrO2 is found to have a cation grain boundary diffusivity of [Formula presented], and surface diffusivity of [Formula presented].

More Details

In Situ TEM Study of Radiation Resistance of Metallic Glass-Metal Core-Shell Nanocubes

ACS Applied Materials and Interfaces

Kiani, Mehrdad T.; Hattar, Khalid M.; Gu, X.W.

Radiation damage can cause significantly more surface damage in metallic nanostructures than bulk materials. Structural changes from displacement damage compromise the performance of nanostructures in radiation environments such as nuclear reactors and outer space, or used in radiation therapy for biomedical treatments. As such, it is important to develop strategies to prevent this from occurring if nanostructures are to be incorporated into these applications. Here, in situ transmission electron microscope ion irradiation was used to investigate whether a metallic glass (MG) coating mitigates sputtering and morphological changes in metallic nanostructures. Dislocation-free Au nanocubes and Au nanocubes coated with a Ni-B MG were bombarded with 2.8 MeV Au4+ ions. The formation of internal defects in bare Au nanocubes was observed at a fluence of 7.5 × 1011 ions/cm2 (0.008 dpa), and morphological changes such as surface roughening, rounding of corners, and formation of nanofilaments began at 4 × 1012 ions/cm2 (0.04 dpa). In contrast, the Ni-B MG-coated Au nanocubes (Au@NiB) showed minimal morphological changes at a fluence of 1.9 × 1013 ions/cm2 (0.2 dpa). The MG coating maintains its amorphous nature under all irradiation conditions investigated.

More Details

Layer-Dependent Bit Error Variation in 3-D NAND Flash under Ionizing Radiation

IEEE Transactions on Nuclear Science

Kumari, Preeti; Huang, Sijay; Wasiolek, Maryla; Hattar, Khalid M.; Ray, Biswajit

In this article, we studied the total ionization dose (TID) effects on the multilevel-cell (MLC) 3-D NAND flash memory using Co-60 gamma radiation. We found a significant page-to-page bit error variation within a physical memory block of the irradiated memory chip. Our analysis showed that the origin of the bit error variation is the unique vertical layer-dependent TID response of the 3-D NAND. We found that the memory pages located at the upper and lower layers of the 3-D stack show higher fails compared to the middle-layer pages of a given memory block. We confirmed our findings by comparing radiation response of four different chips of the same specification. In addition, we compared the TID response of the MLC 3-D NAND with that of the 2-D NAND chip, which showed less page-to-page variation in bit error within a given memory block. We discuss the possible application of our findings for the radiation-tolerant smart memory controller design.

More Details

Ion irradiation effects on Cr-coated zircaloy-4 surface wettability and pool boiling critical heat flux

Nuclear Engineering and Design

Ali, Amir; Kim, Hyun G.; Hattar, Khalid M.; Briggs, Samuel; Jun Park, Dong; Hwan Park, Jung; Lee, Youho

The concept of coating the currently used nuclear fuel cladding (zirconium-based alloy, typically Zircaloy-4 or Zirc-4) with an oxidation preventive layer is a progressing Accident tolerant Fuel (ATF) candidate alloys. The coated Zirc-4-based alloys could be a solution to suppress undesirable fast reaction kinetics with high-temperature steam. Zirc-4 has been the most preferred cladding material in pressurized water reactors (PWRs). Chromium (Cr) based alloys as a coating material provides excellent corrosion protection and good strength and wear resistance. This paper presents the surface wettability measurements and pool boiling Critical Heat Flux (CHF) for Cr-coated Zirc-4 claddings pre- and post-exposure to an ion irradiation environment. The wettability measurements, including static contact angle (contact angle, θ) and average surface roughness (surface roughness, Ra), are introduced for samples of different coating thicknesses (5–30 μm thick). The coatings fabricated by the cold spray of Cr-Al particles to 10 mm × 10 mm × 1.95 mm Zirc-4 substrates. Post fabrication, a Pilgering (cold rolling) process, was applied to finalize the coating thickness and resulted in a significant reduction in surface roughness of initially fabricated rough surfaces. The process produced three distinguished samples 5-μm unpolished (as machined), 5-μm, and 30-μm polished (cold rolled). The measurements are presented for the three surfaces and bare Zirc-4 as a baseline surface. The contact angle analyses were implemented in theoretical models from the literature to predict pool boiling CHF. Pool boiling experiments were conducted to measure the pool boiling CHF values and compare them to the predicted values. Scanning Electron Microscope (SEM) images and Energy Dispersive X-ray Spectroscopy (EDS) analysis was performed to characterize the surfaces for better understanding and interpreting the results. The SEM images showed localized surface damage due to ion irradiation. No recognized change in the measured surface roughness due to ion irradiation. The contact angles of irradiated Cr-coated surfaces are consistently higher (10°) than pre-irradiated surfaces. Decreasing the Cr-coating layer thickness resulted in lower contact angle pre- and post- ion irradiation. The predicted pool boiling CHF using the Kandlikar model is in good agreement with the experimentally measured CHF values within ±12% for all samples.

More Details

Rethinking scaling laws in the high-cycle fatigue response of nanostructured and coarse-grained metals

International Journal of Fatigue

Heckman, Nathan H.; Padilla, Henry A.; Michael, Joseph R.; Barr, Christopher M.; Clark, Blythe C.; Hattar, Khalid M.; Boyce, Brad B.

The high-cycle fatigue life of nanocrystalline and ultrafine-grained Ni-Fe was examined for five distinct grain sizes ranging from approximately 50–600 nm. The fatigue properties were strongly dependent on grain size, with the endurance limit changing by a factor of 4 over this narrow range of grain size. The dataset suggests a breakdown in fatigue improvement for the smallest grain sizes <100 nm, likely associated with a transition to grain coarsening as a dominant rate-limiting mechanism. The dataset also is used to explore fatigue prediction from monotonic tensile properties, suggesting that a characteristic flow strength is more meaningful than the widely-utilized ultimate tensile strength.

More Details

Using In Situ TEM Helium Implantation and Annealing to Study Cavity Nucleation and Growth

JOM

Taylor, Caitlin A.; Sugar, Joshua D.; Robinson, David R.; Bartelt, Norman C.; Sills, Ryan B.; Hattar, Khalid M.

Noble gases are generated within solids in nuclear environments and coalesce to form gas stabilized voids or cavities. Ion implantation has become a prevalent technique for probing how gas accumulation affects microstructural and mechanical properties. Transmission electron microscopy (TEM) allows measurement of cavity density, size, and spatial distributions post-implantation. While post-implantation microstructural information is valuable for determining the physical origins of mechanical property degradation in these materials, dynamic microstructural changes can only be determined by in situ experimentation techniques. We present in situ TEM experiments performed on Pd, a model face-centered cubic metal that reveals real-time cavity evolution dynamics. Observations of cavity nucleation and evolution under extreme environments are discussed.

More Details

Solid-state dewetting instability in thermally-stable nanocrystalline binary alloys

Materialia

Schuler, Jennifer D.; Copeland, Robert G.; Hattar, Khalid M.; Rupert, Timothy J.; Briggs, Samuel A.

Practical applications of nanocrystalline metallic thin films are often limited by instabilities. In addition to grain growth, the thin film itself can become unstable and collapse into islands through solid-state dewetting. Selective alloying can improve nanocrystalline stability, but the impact of this approach on dewetting is not clear. In this study, two alloys that exhibit nanocrystalline thermal stability as ball milled powders are evaluated as thin films. While both alloys demonstrated dewetting behavior following annealing, the severity decreased in more dilute compositions. Ultimately, a balance may be struck between nanocrystalline stability and thin film structural stability by tuning dopant concentration.

More Details

Amorphous intergranular films mitigate radiation damage in nanocrystalline Cu-Zr

Acta Materialia

Schuler, Jennifer D.; Grigorian, Charlette M.; Barr, Christopher M.; Boyce, Brad B.; Hattar, Khalid M.; Rupert, Timothy J.

Nanocrystalline metals are promising radiation tolerant materials due to their large interfacial volume fraction, but irradiation-induced grain growth can eventually degrade any improvement in radiation tolerance. Therefore, methods to limit grain growth and simultaneously improve the radiation tolerance of nanocrystalline metals are needed. Amorphous intergranular films are unique grain boundary structures that are predicted to have improved sink efficiencies due to their increased thickness and amorphous structure, while also improving grain size stability. In this study, ball milled nanocrystalline Cu-Zr alloys are heat treated to either have only ordered grain boundaries or to contain amorphous intergranular films distributed within the grain boundary network, and are then subjected to in situ transmission electron microscopy irradiation and ex situ irradiation. Differences in defect density and grain growth due to grain boundary complexion type are then investigated. When amorphous intergranular films are incorporated within the material, fewer and smaller defect clusters are observed while grain growth is also limited, leading to nanocrystalline alloys with improved radiation tolerance.

More Details

In Situ Transmission Electron Microscopy for Ultrahigh Temperature Mechanical Testing of ZrO2

Nano Letters

Grosso, Robson L.; Muccillo, Eliana N.S.; Muche, Dereck N.F.; Jawaharram, Gowtham S.; Barr, Christopher M.; Monterrosa, Anthony M.; Castro, Ricardo H.R.; Hattar, Khalid M.; Dillon, Shen J.

This work demonstrates a novel approach to ultrahigherature mechanical testing using a combination of in situ nanomechanical testing and localized laser heating. The methodology is applied to characterizing and testing initially nanograined 10 mol % Sc2O3-stabilized ZrO2 up to its melting temperature. The results suggest that the lowerature strength of nanograined, d < 50 nm, oxides is not influenced by creep. Tensile fracture of ZrO2 bicrystals produce a weakerature dependence suggesting that grain boundary energy dominates brittle fracture of grain boundaries even at high homologous temperatures; for example, T = 2050 °C or T ≈ 77% Tmelt. The maximum temperature for mechanical testing in this work is primarily limited by the instability of the sample, due to evaporation or melting, enabling a host of new opportunities for testing materials in the ultrahigherature regime.

More Details

Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques

JOM

Dennett, Cody A.; Choens, R.C.; Taylor, Caitlin A.; Heckman, Nathan H.; Ingraham, Mathew D.; Robinson, David R.; Boyce, Brad B.; Short, Michael P.; Hattar, Khalid M.

Knowing when, why, and how materials evolve, degrade, or fail in radiation environments is pivotal to a wide range of fields from semiconductor processing to advanced nuclear reactor design. A variety of methods, including optical and electron microscopy, mechanical testing, and thermal techniques, have been used in the past to successfully monitor the microstructural and property evolution of materials exposed to extreme radiation environments.Acoustic techniques have also been used in the past for this purpose, although most methodologies have not achieved widespread adoption. However, with an increasing desire to understand microstructure and property evolution in situ, acoustic methods provide a promising pathway to uncover information not accessible to more traditional characterization techniques. This work highlights how two different classes of acoustic techniques may be used to monitor material evolution during in situ ion beam irradiation. The passive listening technique of acoustic emission is demonstrated on two model systems, quartz and palladium, and shown to be a useful tool in identifying the onset of damage events such as microcracking.An active acoustic technique in the form of transient grating spectroscopy is used to indirectly monitor the formation of small defect clusters in copper irradiated with self-ions at high temperature through the evolution of surface acoustic wave speeds.These studies together demonstrate the large potential for using acoustic techniques as in situ diagnostics. Such tools could be used to optimize ion beam processing techniques or identify modes and kinetics of materials degradation in extreme radiation environments.

More Details

Localized corrosion of low-carbon steel at the nanoscale

npj Materials Degradation

Hayden, Steven C.; Chisholm, Claire; Grudt, Rachael O.; Aguiar, Jeffery A.; Mook, William M.; Kotula, Paul G.; Pilyugina, Tatiana S.; Bufford, Daniel C.; Hattar, Khalid M.; Kucharski, Timothy J.; Taie, Ihsan M.; Ostraat, Michele L.; Jungjohann, Katherine L.

Mitigating corrosion remains a daunting challenge due to localized, nanoscale corrosion events that are poorly understood but are known to cause unpredictable variations in material longevity. Here, the most recent advances in liquid-cell transmission electron microscopy were employed to capture the advent of localized aqueous corrosion in carbon steel at the nanoscale and in real time. Localized corrosion initiated at a triple junction formed by a solitary cementite grain and two ferrite grains and then continued at the electrochemically-active boundary between these two phases. With this analysis, we identified facetted pitting at the phase boundary, uniform corrosion rates from the steel surface, and data that suggest that a re-initiating galvanic corrosion mechanism is possible in this environment. These observations represent an important step toward atomically defining nanoscale corrosion mechanisms, enabling the informed development of next-generation inhibition technologies and the improvement of corrosion predictive models.

More Details

Investigations of irradiation effects in crystalline and amorphous SiC

Journal of Applied Physics

Cowen, Benjamin J.; El-Genk, Mohamed S.; Hattar, Khalid M.; Briggs, Samuel A.

The effects of irradiation on 3C-silicon carbide (SiC) and amorphous SiC (a-SiC) are investigated using both in situ transmission electron microscopy (TEM) and complementary molecular dynamics (MD) simulations. The single ion strikes identified in the in situ TEM irradiation experiments, utilizing a 1.7 MeV Au3+ ion beam with nanosecond resolution, are contrasted to MD simulation results of the defect cascades produced by 10-100 keV Si primary knock-on atoms (PKAs). The MD simulations also investigated defect structures that could possibly be responsible for the observed strain fields produced by single ion strikes in the TEM ion beam irradiation experiments. Both MD simulations and in situ TEM experiments show evidence of radiation damage in 3C-SiC but none in a-SiC. Selected area electron diffraction patterns, based on the results of MD simulations and in situ TEM irradiation experiments, show no evidence of structural changes in either 3C-SiC or a-SiC.

More Details

In Situ High-Cycle Fatigue Reveals Importance of Grain Boundary Structure in Nanocrystalline Cu-Zr

JOM

Schuler, Jennifer D.; Barr, Christopher M.; Heckman, Nathan M.; Copeland, Robert G.; Boyce, Brad B.; Hattar, Khalid M.; Rupert, Timothy J.

Nanocrystalline metals typically have high fatigue strengths but low resistance to crack propagation. Amorphous intergranular films are disordered grain boundary complexions that have been shown to delay crack nucleation and slow crack propagation during monotonic loading by diffusing grain boundary strain concentrations, which suggests they may also be beneficial for fatigue properties. To probe this hypothesis, in situ transmission electron microscopy fatigue cycling is performed on Cu-1 at.% Zr thin films thermally treated to have either only ordered grain boundaries or amorphous intergranular films. The sample with only ordered grain boundaries experienced grain coarsening at crack initiation followed by unsteady crack propagation and extensive nanocracking, whereas the sample containing amorphous intergranular films had no grain coarsening at crack initiation followed by steady crack propagation and distributed plastic activity. Microstructural design for control of these behaviors through simple thermal treatments can allow for the improvement of nanocrystalline metal fatigue toughness.

More Details

Real-time thermomechanical property monitoring during ion beam irradiation using in situ transient grating spectroscopy

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Dennett, Cody A.; Buller, Daniel L.; Hattar, Khalid M.; Short, Michael P.

A facility for continuously monitoring the thermal and elastic performance of materials under exposure to ion beam irradiation has been designed and commissioned. By coupling an all-optical, non-contact, non-destructive measurement technique known as transient grating spectroscopy (TGS) to a 6 MV tandem ion accelerator, bulk material properties may be measured at high fidelity as a function of irradiation exposure and temperature. Ion beam energies and optical parameters may be tuned to ensure that only the properties of the ion-implanted surface layer are interrogated. This facility provides complementary capabilities to the set of facilities worldwide which have the ability to study the evolution of microstructure in situ during radiation exposure, but lack the ability to measure bulk-like properties. Here, the measurement physics of TGS, design of the experimental facility, and initial results using both light and heavy ion exposures are described. Finally, several short- and long-term upgrades are discussed which will further increase the capabilities of this diagnostic.

More Details

Synthesis of complex rare earth nanostructures using: In situ liquid cell transmission electron microscopy

Nanoscale Advances

Taylor, Caitlin A.; Nenoff, T.M.; Pratt, Sarah H.; Hattar, Khalid M.

Energy and cost efficient synthesis pathways are important for the production, processing, and recycling of rare earth metals necessary for a range of advanced energy and environmental applications. In this work, we present results of successful in situ liquid cell transmission electron microscopy production and imaging of rare earth element nanostructure synthesis, from aqueous salt solutions, via radiolysis due to exposure to a 200 keV electron beam. Nucleation, growth, and crystallization processes for nanostructures formed in yttrium(iii) nitrate hydrate (Y(NO3)3·4H2O), europium(iii) chloride hydrate (EuCl3·6H2O), and lanthanum(iii) chloride hydrate (LaCl3·7H2O) solutions are discussed. In situ electron diffraction analysis in a closed microfluidic configuration indicated that rare earth metal, salt, and metal oxide structures were synthesized. Real-time imaging of nanostructure formation was compared in closed cell and flow cell configurations. Notably, this work also includes the first known collection of automated crystal orientation mapping data through liquid using a microfluidic transmission electron microscope stage, which permits the deconvolution of amorphous and crystalline features (orientation and interfaces) inside the resulting nanostructures.

More Details

New nanoscale toughening mechanisms mitigate embrittlement in binary nanocrystalline alloys

Nanoscale

Heckman, Nathan H.; Foiles, Stephen M.; O'Brien, Christopher J.; Chandross, M.; Barr, Christopher M.; Argibay, Nicolas A.; Hattar, Khalid M.; Lu, Ping L.; Adams, David P.; Boyce, Brad B.

Nanocrystalline metals offer significant improvements in structural performance over conventional alloys. However, their performance is limited by grain boundary instability and limited ductility. Solute segregation has been proposed as a stabilization mechanism, however the solute atoms can embrittle grain boundaries and further degrade the toughness. In the present study, we confirm the embrittling effect of solute segregation in Pt-Au alloys. However, more importantly, we show that inhomogeneous chemical segregation to the grain boundary can lead to a new toughening mechanism termed compositional crack arrest. Energy dissipation is facilitated by the formation of nanocrack networks formed when cracks arrested at regions of the grain boundaries that were starved in the embrittling element. This mechanism, in concert with triple junction crack arrest, provides pathways to optimize both thermal stability and energy dissipation. A combination of in situ tensile deformation experiments and molecular dynamics simulations elucidate both the embrittling and toughening processes that can occur as a function of solute content.

More Details

Departing from the mutual exclusiveness of strength and ductility in nanocrystalline metals with vacancy induced plasticity

Scripta Materialia

Islam, Zahabul; Wang, Baoming; Hattar, Khalid M.; Gao, Huajian; Haque, Aman

Strength and ductility are mutually exclusive in metallic materials. To break this relationship, we start with nanocrystalline Zirconium with very high strength and low ductility. We then ion irradiate the specimens to introduce vacancies, which promote diffusional plasticity without reducing strength. Mechanical tests inside the Transmission Electron Microscope reveal about 300% increase in plastic strain after self ion-irradiation. Molecular dynamics simulation showed that 4.3% increase in vacancies near the grain boundaries can result in about 60% increase in plastic strain. Both experimental and computational results support our hypothesis that vacancies may enhance plasticity through higher atomic diffusivity at the grain boundaries.

More Details

Development of Elastic Recoil Detection Technique for Quantifying Light Isotope Concentrations in Irradiated TPBAR Materials

Doyle, Barney L.; Taylor, Caitlin A.; Hattar, Khalid M.; Muntifering, Brittany R.

The National Nuclear Security Administration's Tritium Sustainment Program is responsible for the design, development, demonstration, testing, analysis, and characterization of tritium-producing burnable absorber rods (TPBARs) and their components, in addition to producing tritium for the nation's strategic stockpile. The FY18 call for proposals included the specific basic science research topic, "Demonstration and evaluation of advanced characterization methods, particularly for quantifying the concentration of light isotopes (1H, 2H, and 4He, 6Li, and 7Li) in metal or ceramic matrices". A project IWO-389859 was awarded to the Ion Beam Lab (IBL) at Sandia-NM in FY18. This reports the success we had in developing and demonstrating such a method: 42 MeV Si+ 7 from the IBL' s Tandem was used to recoil these light isotopes into special detectors that separated all these isotopes by simultaneously measuring the energy and stopping power of these reoils. This technique, called Heavy Ion - Elastic Recoil Detection or HI-ERD, accurately measured the enriched 6 Li/Li-total of 0.246 +- 0.016, compared to the known value of 0.239. The isotopes 1H, 2H, 4He, 6Li and 7Li were also measured. (page intentionally left blank)

More Details

Fundamentals of Pellet-Clad Debonding

Dingreville, Remi P.; Hattar, Khalid M.; Boyle, Timothy J.; Monterrosa, Anthony M.; Barr, Christopher M.; Weck, Philippe F.; Juan, Pierre-Alexandre J.

This project focused on providing a fundamental mechanistic understanding of the complex degra- dation mechanisms associated with Pellet/Clad Debonding (PCD) through the use of a unique suite of novel synthesis of surrogate spent nuclear fuel, in-situ nanoscale experiments on surrogate interfaces, multi-modeling, and characterization of decommissioned commercial spent fuel. The understanding of a broad class of metal/ceramic interfaces degradation studied within this project provided the technical basis related to the safety of high burn-up fuel, a problem of interest to the DOE.

More Details

Radiation damage in nanostructured materials

Progress in Materials Science

Zhang, Xinghang; Hattar, Khalid M.; Chen, Youxing; Shao, Lin; Li, Jin; Sun, Cheng; Yu, Kaiyuan; Li, Nan; Taheri, Mitra L.; Wang, Haiyan; Wang, Jian; Nastasi, Michael

Materials subjected to high dose irradiation by energetic particles often experience severe damage in the form of drastic increase of defect density, and significant degradation of their mechanical and physical properties. Extensive studies on radiation effects in materials in the past few decades show that, although nearly no materials are immune to radiation damage, the approaches of deliberate introduction of certain types of defects in materials before radiation are effective in mitigating radiation damage. Nanostructured materials with abundant internal defects have been extensively investigated for various applications. The field of radiation damage in nanostructured materials is an exciting and rapidly evolving arena, enriched with challenges and opportunities. In this review article, we summarize and analyze the current understandings on the influence of various types of internal defect sinks on reduction of radiation damage in primarily nanostructured metallic materials, and partially on nanoceramic materials. We also point out open questions and future directions that may significantly improve our fundamental understandings on radiation damage in nanomaterials. The integration of extensive research effort, resources and expertise in various fields may eventually lead to the design of advanced nanomaterials with unprecedented radiation tolerance.

More Details

High temperature irradiation induced creep in Ag nanopillars measured via in situ transmission electron microscopy

Scripta Materialia

Jawaharram, Gowtham S.; Price, Patrick M.; Barr, Christopher M.; Hattar, Khalid M.; Averback, Robert S.; Dillon, Shen J.

Irradiation induced creep (IIC) rates are measured in compression on Ag nanopillar (square) beams in the sink-limited regime. The IIC rate increases linearly with stress at lower stresses, i.e. below ≈2/3 the high temperature yield stress and parabolically with pillar width, L, for L less than ≈300 nm. The data are obtained by combining in situ transmission electron imaging with simultaneous ion irradiation, laser heating, and nanopillar compression. Results in the larger width regime are consistent with prior literature.

More Details

Solute stabilization of nanocrystalline tungsten against abnormal grain growth

Journal of Materials Research

Donaldson, Olivia K.; Hattar, Khalid M.; Kaub, Tyler; Thompson, Gregory B.; Trelewicz, Jason R.

Microstructure and phase evolution in magnetron sputtered nanocrystalline tungsten and tungsten alloy thin films are explored through in situ TEM annealing experiments at temperatures up to 1000 °C. Grain growth in unalloyed nanocrystalline tungsten transpires through a discontinuous process at temperatures up to 550 °C, which is coupled to an allotropic phase transformation of metastable β-tungsten with the A-15 cubic structure to stable body centered cubic (BCC) α-tungsten. Complete transformation to the BCC α-phase is accompanied by the convergence to a unimodal nanocrystalline structure at 650 °C, signaling a transition to continuous grain growth. Alloy films synthesized with compositions of W-20 at.% Ti and W-15 at.% Cr exhibit only the BCC α-phase in the as-deposited state, which indicate the addition of solute stabilizes the films against the formation of metastable β-tungsten. Thermal stability of the alloy films is significantly improved over their unalloyed counterpart up to 1000 °C, and grain coarsening occurs solely through a continuous growth process. The contrasting thermal stability between W-Ti and W-Cr is attributed to different grain boundary segregation states, thus demonstrating the critical role of grain boundary chemistry in the design of solute-stabilized nanocrystalline alloys.

More Details

Evidence that abnormal grain growth precedes fatigue crack initiation in nanocrystalline Ni-Fe

Scripta Materialia

Furnish, Timothy A.; Bufford, Daniel C.; Ren, Fang; Mehta, Apurva; Hattar, Khalid M.; Boyce, Brad B.

Prior studies on the high-cycle fatigue behavior of nanocrystalline metals have shown that fatigue fracture is associated with abnormal grain growth (AGG). However, those previous studies have been unable to determine if AGG precedes fatigue crack initiation, or vice-versa. The present study shows that AGG indeed occurs prior to crack formation in nanocrystalline Ni-Fe by using a recently developed synchrotron X-ray diffraction modality that has been adapted for in-situ analysis. The technique allows fatigue tests to be interrupted at the initial signs of the AGG process, and subsequent microscopy reveals the precursor damage state preceding crack initiation.

More Details

In situ tem observations of corrosion in nanocrystalline fe thin films

Ceramic Transactions

Gross, David; Kacher, Josh; Key, Jordan; Hattar, Khalid M.; Robertson, Ian M.

The corrosion of pulsed-laser deposited Fe thin films by aqueous acetic acid solution was explored in real time by performing dynamic microfluidic experiments in situ in a transmission electron microscope. The films were examined in both the as-deposited condition and after annealing. In the as-deposited films, discrete events featuring the localized dissolution of grains were observed with the dissolved volumes ranging in size from ~1.5 x 10-5 μm3 to 3.4 x 10-7 μm3. The annealed samples had larger grains than the as-deposited samples, were more resistant to corrosion, and did not show similar discrete dissolution events. The electron beam was observed to accelerate the corrosion, especially on the as-deposited samples. The effects of grain surface energy, grain boundary energy and the electron beam-specimen interactions are discussed in relation to the observed behavior.

More Details

Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

Journal of Materials Science

O'Brien, Christopher J.; Barr, Christopher M.; Price, Patrick M.; Hattar, Khalid M.; Foiles, Stephen M.

There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction that grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.

More Details
Results 1–200 of 527
Results 1–200 of 527