Publications

Results 1–25 of 35
Skip to search filters

Mechanisms for charge-transfer processes at electrode/solid-electrolyte interfaces

El Gabaly Marquez, Farid E.; McDaniel, Anthony H.; Whaley, Josh A.; Chueh, William C.; McCarty, Kevin F.

This report summarizes the accomplishments of a Laboratory-Directed Research and Development (LDRD) project focused on developing and applying new x-ray spectroscopies to understand and improve electric charge transfer in electrochemical devices. Our approach studies the device materials as they function at elevated temperature and in the presence of sufficient gas to generate meaningful currents through the device. We developed hardware and methods to allow x-ray photoelectron spectroscopy to be applied under these conditions. We then showed that the approach can measure the local electric potentials of the materials, identify the chemical nature of the electrochemical intermediate reaction species and determine the chemical state of the active materials. When performed simultaneous to traditional impedance-based analysis, the approach provides an unprecedented characterization of an operating electrochemical system.

More Details

Enabling graphene nanoelectronics

Ohta, Taisuke O.; McCarty, Kevin F.; Beechem, Thomas E.; Pan, Wei P.; Biedermann, Laura B.; Ross III, Anthony J.; Gutierrez, Carlos G.

Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

More Details

Measuring individual overpotentials in an operating solid-oxide electrochemical cell

Physical Chemistry Chemical Physics

El Gabaly Marquez, Farid E.; Grass, Michael; McDaniel, Anthony H.; Farrow, Roger L.; Linne, Mark A.; Hussain, Zahid; Bluhm, Hendrik; Liu, Zhi; McCarty, Kevin F.

We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell’s inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on Ni H2O splitting proceeds more rapidly than H2 oxidation, while on Pt, H2 oxidation proceeds more rapidly than H2O splitting. © the Owner Societies.

More Details

In-situ investigation of SOFC patterned electrodes using ambient-pressure X-ray photoelectron spectroscopy

ECS Transactions

McDaniel, Anthony H.; El Gabaly, F.; Akhadov, E.; Farrow, Roger L.; McCarty, Kevin F.; Linne, M.A.; Decaluwe, S.C.; Zhang, C.; Eichhorn, B.; Jackson, G.S.; Liu, Z.; Grass, M.; Hussain, Z.; Bluhm, H.

Single chamber electrochemical cells were fabricated by patterning working and counter electrodes of Ni and Pt on single-crystal Y2O 3-stabilized ZrO2. Cells were characterized in mixed atmospheres of H2 and H2O at ratios of 1:1 and 1:20 at nominally 923 K and 67 Pa total pressure. Potential sweep and impedance measurements were conducted simultaneously with ambient-pressure x-ray photoelectron spectroscopy (APXPS), which is a unique synchrotron-based probe designed for in-situ chemical characterization of surfaces using photoemission at gas pressures large enough to achieve realistic densities of faradic current. Electrochemically induced oxidation of Ni was observed under anodic polarization and could be reversed by applying a cathodic bias. The thin-film microstructure could also be manipulated electrochemically in that pores exposing underlying electrolyte would open through the Ni film after polarization. Application of APXPS to resolve fundamental details of high-temperature electrochemical process in-situ is discussed. ©The Electrochemical Society.

More Details

How metal films de-wet substrates-identifying the kinetic pathways and energetic driving forces

New Journal of Physics

McCarty, Kevin F.; Hamilton, John C.; Sato, Yu; Saá, Angela; Stumpf, Roland; Figuera, Juan D.; Thurmer, Konrad T.; Jones, Frank; Schmid, Andreas K.; Talin, A.A.; Bartelt, Norman C.

We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

More Details

Tritium Storage Material

Cowgill, D.F.; Fares, Stephen J.; Ong, Markus D.; Arslan, Ilke A.; Tran, Kim T.; Sartor, George B.; Stewart, Kenneth D.; Cliff, Miles; Robinson, David R.; McCarty, Kevin F.; Luo, Weifang L.; Smugeresky, J.E.

Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.

More Details
Results 1–25 of 35
Results 1–25 of 35