Microstructural Effects on Glass-Ceramic Mechnaical Response and Slow Crack Growth Behavior
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Key Engineering Materials
Packaging high power radio frequency integrated circuits (RFICs) in low temperature cofired ceramic (LTCC) presents many challenges. Within the constraints of LTCC fabrication, the design must provide the usual electrical isolation and interconnections required to package the IC, with additional consideration given to RF isolation and thermal management. While iterative design and prototyping is an option for developing RFIC packaging, it would be expensive and most likely unsuccessful due to the complexity of the problem. To facilitate and optimize package design, thermal and mechanical simulations were used to understand and control the critical parameters in LTCC package design. The models were validated through comparisons to experimental results. This paper summarizes an experimentally-validated modeling approach to RFIC package design, and presents some results and key findings. © (2011) Trans Tech Publications, Switzerland.
Abstract not provided.
Microsystems packaging involves physically placing and electrically interconnecting a microelectronic device in a package that protects it from and interfaces it with the outside world. When the device requires a hermetic or controlled microenvironment, it is typically sealed within a cavity in the package. Sealing involves placing and attaching a lid, typically by welding, brazing, or soldering. Materials selection (e.g., the epoxy die attach), and process control (e.g., the epoxy curing temperature and time) are critical for reproducible and reliable microsystems packaging. This paper will review some hermetic and controlled microenvironment packaging at Sandia Labs, and will discuss materials, processes, and equipment used to package environmentally sensitive microelectronics (e.g., MEMS and sensors).
Microsystems packaging involves physically placing and electrically interconnecting a microelectronic device in a package that protects it from and interfaces it with the outside world. When the device requires a hermetic or controlled microenvironment, it is typically sealed within a cavity in the package. Sealing involves placing and attaching a lid, typically by welding, brazing, or soldering. Materials selection (e.g., the epoxy die attach), and process control (e.g., the epoxy curing temperature and time) are critical for reproducible and reliable microsystems packaging. This paper will review some hermetic and controlled microenvironment packaging at Sandia Labs, and will discuss materials, processes, and equipment used to package environmentally sensitive microelectronics (e.g., MEMS and sensors).
Abstract not provided.
Abstract not provided.
Abstract not provided.