Publications

16 Results
Skip to search filters

Exploiting silicon chip technology for control of electrons on superfluid helium

Gurrieri, Thomas G.; Eng, Kevin E.; Hines, Kathleen J.

Electrons on the surface of superfluid helium have extremely high mobilities and long predicted spin coherence times, making them ideal mobile qubits. Previous work has shown that electrons localized in helium filled channels can be reliably transported between multiple underlying gates. Silicon chips have been designed, fabricated, and post processed by reactive ion etching to leverage the large scale integration capabilities of silicon technology. These chips, which serve as substrates for the electrons on helium research, utilize silicon CMOS for on-chip signal amplification and multiplexing and the uppermost metal layers for defining the helium channels and applying electrical potentials for moving the electrons. We will discuss experimental results for on-chip circuitry and clocked electron transport along etched channels.

More Details

Si and SiGe based double top gated accumulation mode single electron transistors for quantum bits

Carroll, Malcolm; Tracy, Lisa A.; Eng, Kevin E.; Ten Eyck, Gregory A.; Stevens, Jeffrey S.; Wendt, J.R.; Lilly, Michael L.

There is significant interest in forming quantum bits (qubits) out of single electron devices for quantum information processing (QIP). Information can be encoded using properties like charge or spin. Spin is appealing because it is less strongly coupled to the solid-state environment so it is believed that the quantum state can better be preserved over longer times (i.e., that is longer decoherence times may be achieved). Long spin decoherence times would allow more complex qubit operations to be completed with higher accuracy. Recently spin qubits were demonstrated by several groups using electrostatically gated modulation doped GaAs double quantum dots (DQD) [1], which represented a significant breakthrough in the solid-state field. Although no Si spin qubit has been demonstrated to date, work on Si and SiGe based spin qubits is motivated by the observation that spin decoherence times can be significantly longer than in GaAs. Spin decoherence times in GaAs are in part limited by the random spectral diffusion of the non-zero nuclear spins of the Ga and As that couple to the electron spin through the hyperfine interaction. This effect can be greatly suppressed by using a semiconductor matrix with a near zero nuclear spin background. Near zero nuclear spin backgrounds can be engineered using Si by growing {sup 28}Si enriched epitaxy. In this talk, we will present fabrication details and electrical transport results of an accumulation mode double top gated Si metal insulator semiconductor (MIS) nanostructure, Fig 1 (a) & (b). We will describe how this single electron device structure represent a path towards forming a Si based spin qubit similar in design as that demonstrated in GaAs. Potential advantages of this novel qubit structure relative to previous approaches include the combination of: no doping (i.e., not modulation doped); variable two-dimensional electron gas (2DEG) density; CMOS compatible processes; and relatively small vertical length scales to achieve smaller dots. A primary concern in this structure is defects at the insulator-silicon interface. The Sandia National Laboratories 0.35 {micro}m fab line was used for critical processing steps including formation of the gate oxide to examine the utility of a standard CMOS quality oxide silicon interface for the purpose of fabricating Si qubits. Large area metal oxide silicon (MOS) structures showed a peak mobility of 15,000 cm{sup 2}/V-s at electron densities of {approx}1 x 10{sup 12} cm{sup -2} for an oxide thickness of 10 nm. Defect density measured using standard C-V techniques was found to be greater with decreasing oxide thickness suggesting a device design trade-off between oxide thickness and quantum dot size. The quantum dot structure is completed using electron beam lithography and poly-silicon etch to form the depletion gates, Fig 1 (a). The accumulation gate is added by introducing a second insulating Al{sub 2}O{sub 3} layer, deposited by atomic layer deposition, followed by an Al top gate deposition, Fig. 1 (b). Initial single electron transistor devices using SiO{sub 2} show significant disorder in structures with relatively large critical dimensions of the order of 200-300 nm, Fig 2. This is not uncommon for large silicon structures and has been cited in the literature [2]. Although smaller structures will likely minimize the effect of disorder and well controlled small Si SETs have been demonstrated [3], the design constraints presented by disorder combined with long term concerns about effects of defects on spin decoherence time (e.g., paramagnetic centers) motivates pursuit of a 2nd generation structure that uses a compound semiconductor approach, an epitaxial SiGe barrier as shown in Fig. 2 (c). SiGe may be used as an electron barrier when combined with tensilely strained Si. The introduction of strained-Si into the double top gated device structure, however, represents additional fabrication challenges. Thermal budget is potentially constrained due to concerns related to strain relaxation. Fabrication details related to the introduction of strained silicon on insulator and SiGe barrier formation into the Sandia National Laboratories 0.35 {micro}m fab line will also be presented.

More Details

Steps toward fabricating cryogenic CMOS compatible single electron devices for future qubits

Ten Eyck, Gregory A.; Tracy, Lisa A.; Wendt, J.R.; Childs, Kenton D.; Stevens, Jeffrey S.; Lilly, Michael L.; Carroll, Malcolm; Eng, Kevin E.

We describe the development of a novel silicon quantum bit (qubit) device architecture that involves using materials that are compatible with a Sandia National Laboratories (SNL) 0.35 mum complementary metal oxide semiconductor (CMOS) process intended to operate at 100 mK. We describe how the qubit structure can be integrated with CMOS electronics, which is believed to have advantages for critical functions like fast single electron electrometry for readout compared to current approaches using radio frequency techniques. Critical materials properties are reviewed and preliminary characterization of the SNL CMOS devices at 4.2 K is presented.

More Details
16 Results
16 Results