Errors in quantum logic gates are usually modeled by quantum process matrices (CPTP maps). But process matrices can be opaque and unwieldy. We show how to transform the process matrix of a gate into an error generator that represents the same information more usefully. We construct a basis of simple and physically intuitive elementary error generators, classify them, and show how to represent the error generator of any gate as a mixture of elementary error generators with various rates. Finally, we show how to build a large variety of reduced models for gate errors by combining elementary error generators and/or entire subsectors of generator space. We conclude with a few examples of reduced models, including one with just 9N2 parameters that describes almost all commonly predicted errors on an N-qubit processor.
Nuclear spins were among the first physical platforms to be considered for quantum information processing1,2, because of their exceptional quantum coherence3 and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, owing to the lack of methods with which to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin4, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterized using gate set tomography (GST)5, yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors6. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger–Horne–Zeilinger three-qubit state with 92.5(1.0)% fidelity. Because electron spin qubits in semiconductors can be further coupled to other electrons7–9 or physically shuttled across different locations10,11, these results establish a viable route for scalable quantum information processing using donor nuclear and electron spins.
Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure.
Measurements that occur within the internal layers of a quantum circuit—midcircuit measurements—are a useful quantum-computing primitive, most notably for quantum error correction. Midcircuit measurements have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements that terminate quantum circuits. Here we show how to characterize midcircuit measurements, modeled by quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST). We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we explore the impact of residual cavity photon population on measurement error. QILGST can resolve different error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000ns we measure a total error rate (i.e., half diamond distance) of ϵ⋄=8.1±1.4%, a readout fidelity of 97.0±0.3%, and output quantum-state fidelities of 96.7±0.6% and 93.7±0.7% when measuring 0 and 1, respectively.
We present a simple and powerful technique for finding a good error model for a quantum processor. The technique iteratively tests a nested sequence of models against data obtained from the processor, and keeps track of the best-fit model and its wildcard error (a metric of the amount of unmodeled error) at each step. Each best-fit model, along with a quantification of its unmodeled error, constitutes a characterization of the processor. We explain how quantum processor models can be compared with experimental data and to each other. We demonstrate the technique by using it to characterize a simulated noisy two-qubit processor.
We adapt the robust phase estimation algorithm to the evaluation of energy differences between two eigenstates using a quantum computer. This approach does not require controlled unitaries between auxiliary and system registers or even a single auxiliary qubit. As a proof of concept, we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately evaluate eigenvalue differences.
We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.
Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Early versions of GST emerged around 2012-13, and since then it has been refined, demonstrated, and used in a large number of experiments. This paper presents the foundations of GST in comprehensive detail. The most important feature of GST, compared to older state and process tomography protocols, is that it is calibration-free. GST does not rely on pre-calibrated state preparations and measurements. Instead, it characterizes all the operations in a gate set simultaneously and self-consistently, relative to each other. Long sequence GST can estimate gates with very high precision and efficiency, achieving Heisenberg scaling in regimes of practical interest. In this paper, we cover GST’s intellectual history, the techniques and experiments used to achieve its intended purpose, data analysis, gauge freedom and fixing, error bars, and the interpretation of gauge-fixed estimates of gate sets. Our focus is fundamental mathematical aspects of GST, rather than implementation details, but we touch on some of the foundational algorithmic tricks used in the pyGSTi implementation.
After decades of R&D, quantum computers comprising more than 2 qubits are appearing. If this progress is to continue, the research community requires a capability for precise characterization (“tomography”) of these enlarged devices, which will enable benchmarking, improvement, and finally certification as mission-ready. As world leaders in characterization -- our gate set tomography (GST) method is the current state of the art – the project team is keenly aware that every existing protocol is either (1) catastrophically inefficient for more than 2 qubits, or (2) not rich enough to predict device behavior. GST scales poorly, while the popular randomized benchmarking technique only measures a single aggregated error probability. This project explored a new insight: that the combinatorial explosion plaguing standard GST could be avoided by using an ansatz of few-qubit interactions to build a complete, efficient model for multi-qubit errors. We developed this approach, prototyped it, and tested it on a cutting-edge quantum processor developed by Rigetti Quantum Computing (RQC), a US-based startup. We implemented our new models within Sandia’s PyGSTi open-source code, and tested them experimentally on the RQC device by probing crosstalk. We found two major results: first, our schema worked and is viable for further development; second, while the Rigetti device is indeed a “real” 8-qubit quantum processor, its behavior fluctuated significantly over time while we were experimenting with it and this drift made it difficult to fit our models of crosstalk to the data.
If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.
PyGSTi is a Python software package for assessing and characterizing the performance of quantum computing processors. It can be used as a standalone application, or as a library, to perform a wide variety of quantum characterization, verification, and validation (QCVV) protocols on as-built quantum processors. We outline pyGSTi's structure, and what it can do, using multiple examples. We cover its main characterization protocols with end-to-end implementations. These include gate set tomography, randomized benchmarking on one or many qubits, and several specialized techniques. We also discuss and demonstrate how power users can customize pyGSTi and leverage its components to create specialized QCVV protocols and solve user-specific problems.
As increasingly impressive quantum information processors are realized in laboratories around the world, robust and reliable characterization of these devices is now more urgent than ever. These diagnostics can take many forms, but one of the most popular categories is tomography, where an underlying parameterized model is proposed for a device and inferred by experiments. Here, we introduce and implement efficient operational tomography, which uses experimental observables as these model parameters. This addresses a problem of ambiguity in representation that arises in current tomographic approaches (the gauge problem). Solving the gauge problem enables us to efficiently implement operational tomography in a Bayesian framework computationally, and hence gives us a natural way to include prior information and discuss uncertainty in fit parameters. We demonstrate this new tomography in a variety of different experimentally-relevant scenarios, including standard process tomography, Ramsey interferometry, randomized benchmarking, and gate set tomography.
Benchmarking methods that can be adapted to multiqubit systems are essential for assessing the overall or "holistic" performance of nascent quantum processors. The current industry standard is Clifford randomized benchmarking (RB), which measures a single error rate that quantifies overall performance. But, scaling Clifford RB to many qubits is surprisingly hard. It has only been performed on one, two, and three qubits as of this writing. This reflects a fundamental inefficiency in Clifford RB: the n-qubit Clifford gates at its core have to be compiled into large circuits over the one- and two-qubit gates native to a device. As n grows, the quality of these Clifford gates quickly degrades, making Clifford RB impractical at relatively low n. In this Letter, we propose a direct RB protocol that mostly avoids compiling. Instead, it uses random circuits over the native gates in a device, which are seeded by an initial layer of Clifford-like randomization. We demonstrate this protocol experimentally on two to five qubits using the publicly available ibmqx5. We believe this to be the greatest number of qubits holistically benchmarked, and this was achieved on a freely available device without any special tuning up. Our protocol retains the simplicity and convenient properties of Clifford RB: it estimates an error rate from an exponential decay. But, it can be extended to processors with more qubits - we present simulations on 10+ qubits - and it reports a more directly informative and flexible error rate than the one reported by Clifford RB. We show how to use this flexibility to measure separate error rates for distinct sets of gates, and we use this method to estimate the average error rate of a set of cnot gates.