Publications

102 Results
Skip to search filters

A Taxonomy of Small Markovian Errors

PRX Quantum

Blume-Kohout, Robin J.; da Silva, Marcus P.; Nielsen, Erik N.; Proctor, Timothy J.; Rudinger, Kenneth M.; Sarovar, Mohan S.; Young, Kevin C.

Errors in quantum logic gates are usually modeled by quantum process matrices (CPTP maps). But process matrices can be opaque and unwieldy. We show how to transform the process matrix of a gate into an error generator that represents the same information more usefully. We construct a basis of simple and physically intuitive elementary error generators, classify them, and show how to represent the error generator of any gate as a mixture of elementary error generators with various rates. Finally, we show how to build a large variety of reduced models for gate errors by combining elementary error generators and/or entire subsectors of generator space. We conclude with a few examples of reduced models, including one with just 9N2 parameters that describes almost all commonly predicted errors on an N-qubit processor.

More Details

Precision tomography of a three-qubit donor quantum processor in silicon

Nature

Mądzik, Mateusz T.; Asaad, Serwan; Youssry, Akram; Joecker, Benjamin; Rudinger, Kenneth M.; Nielsen, Erik N.; Young, Kevin C.; Proctor, Timothy J.; Baczewski, Andrew D.; Laucht, Arne; Schmitt, Vivien; Hudson, Fay E.; Itoh, Kohei M.; Jakob, Alexander M.; Johnson, Brett C.; Jamieson, David N.; Dzurak, Andrew S.; Ferrie, Christopher; Blume-Kohout, Robin J.; Morello, Andrea

Nuclear spins were among the first physical platforms to be considered for quantum information processing1,2, because of their exceptional quantum coherence3 and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, owing to the lack of methods with which to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin4, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterized using gate set tomography (GST)5, yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors6. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger–Horne–Zeilinger three-qubit state with 92.5(1.0)% fidelity. Because electron spin qubits in semiconductors can be further coupled to other electrons7–9 or physically shuttled across different locations10,11, these results establish a viable route for scalable quantum information processing using donor nuclear and electron spins.

More Details

Measuring the capabilities of quantum computers

Nature Physics

Proctor, Timothy J.; Rudinger, Kenneth M.; Young, Kevin; Nielsen, Erik N.; Blume-Kohout, Robin J.

Quantum computers can now run interesting programs, but each processor’s capability—the set of programs that it can run successfully—is limited by hardware errors. These errors can be complicated, making it difficult to accurately predict a processor’s capability. Benchmarks can be used to measure capability directly, but current benchmarks have limited flexibility and scale poorly to many-qubit processors. We show how to construct scalable, efficiently verifiable benchmarks based on any program by using a technique that we call circuit mirroring. With it, we construct two flexible, scalable volumetric benchmarks based on randomized and periodically ordered programs. We use these benchmarks to map out the capabilities of twelve publicly available processors, and to measure the impact of program structure on each one. We find that standard error metrics are poor predictors of whether a program will run successfully on today’s hardware, and that current processors vary widely in their sensitivity to program structure.

More Details

Characterizing Midcircuit Measurements on a Superconducting Qubit Using Gate Set Tomography

Physical Review Applied

Rudinger, Kenneth M.; Ribeill, Guilhem J.; Govia, Luke C.G.; Ware, Matthew; Nielsen, Erik N.; Young, Kevin; Ohki, Thomas A.; Blume-Kohout, Robin J.; Proctor, Timothy J.

Measurements that occur within the internal layers of a quantum circuit—midcircuit measurements—are a useful quantum-computing primitive, most notably for quantum error correction. Midcircuit measurements have both classical and quantum outputs, so they can be subject to error modes that do not exist for measurements that terminate quantum circuits. Here we show how to characterize midcircuit measurements, modeled by quantum instruments, using a technique that we call quantum instrument linear gate set tomography (QILGST). We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system. By varying the delay time between the measurement pulse and subsequent gates, we explore the impact of residual cavity photon population on measurement error. QILGST can resolve different error modes and quantify the total error from a measurement; in our experiment, for delay times above 1000ns we measure a total error rate (i.e., half diamond distance) of ϵ⋄=8.1±1.4%, a readout fidelity of 97.0±0.3%, and output quantum-state fidelities of 96.7±0.6% and 93.7±0.7% when measuring 0 and 1, respectively.

More Details

Efficient flexible characterization of quantum processors with nested error models

New Journal of Physics

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Young, Kevin; Blume-Kohout, Robin J.

We present a simple and powerful technique for finding a good error model for a quantum processor. The technique iteratively tests a nested sequence of models against data obtained from the processor, and keeps track of the best-fit model and its wildcard error (a metric of the amount of unmodeled error) at each step. Each best-fit model, along with a quantification of its unmodeled error, constitutes a characterization of the processor. We explain how quantum processor models can be compared with experimental data and to each other. We demonstrate the technique by using it to characterize a simulated noisy two-qubit processor.

More Details

Evaluating Energy Differences on a Quantum Computer with Robust Phase Estimation

Physical Review Letters

Russo, A.E.; Rudinger, Kenneth M.; Morrison, B.C.A.; Baczewski, Andrew D.

We adapt the robust phase estimation algorithm to the evaluation of energy differences between two eigenstates using a quantum computer. This approach does not require controlled unitaries between auxiliary and system registers or even a single auxiliary qubit. As a proof of concept, we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately evaluate eigenvalue differences.

More Details

Consistency testing for robust phase estimation

Physical Review A

Russo, Antonio R.; Kirby, William M.; Rudinger, Kenneth M.; Baczewski, Andrew D.; Kimmel, Shelby

We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.

More Details

Gate Set Tomography

Quantum

Nielsen, Erik N.; Gamble, John K.; Rudinger, Kenneth M.; Scholten, Travis; Young, Kevin; Blume-Kohout, Robin J.

Gate set tomography (GST) is a protocol for detailed, predictive characterization of logic operations (gates) on quantum computing processors. Early versions of GST emerged around 2012-13, and since then it has been refined, demonstrated, and used in a large number of experiments. This paper presents the foundations of GST in comprehensive detail. The most important feature of GST, compared to older state and process tomography protocols, is that it is calibration-free. GST does not rely on pre-calibrated state preparations and measurements. Instead, it characterizes all the operations in a gate set simultaneously and self-consistently, relative to each other. Long sequence GST can estimate gates with very high precision and efficiency, achieving Heisenberg scaling in regimes of practical interest. In this paper, we cover GST’s intellectual history, the techniques and experiments used to achieve its intended purpose, data analysis, gauge freedom and fixing, error bars, and the interpretation of gauge-fixed estimates of gate sets. Our focus is fundamental mathematical aspects of GST, rather than implementation details, but we touch on some of the foundational algorithmic tricks used in the pyGSTi implementation.

More Details

Efficient, Predictive Tomography of Multi-Qubit Quantum Processors

Blume-Kohout, Robin J.; Nielsen, Erik N.; Rudinger, Kenneth M.; Sarovar, Mohan S.; Young, Kevin C.

After decades of R&D, quantum computers comprising more than 2 qubits are appearing. If this progress is to continue, the research community requires a capability for precise characterization (“tomography”) of these enlarged devices, which will enable benchmarking, improvement, and finally certification as mission-ready. As world leaders in characterization -- our gate set tomography (GST) method is the current state of the art – the project team is keenly aware that every existing protocol is either (1) catastrophically inefficient for more than 2 qubits, or (2) not rich enough to predict device behavior. GST scales poorly, while the popular randomized benchmarking technique only measures a single aggregated error probability. This project explored a new insight: that the combinatorial explosion plaguing standard GST could be avoided by using an ansatz of few-qubit interactions to build a complete, efficient model for multi-qubit errors. We developed this approach, prototyped it, and tested it on a cutting-edge quantum processor developed by Rigetti Quantum Computing (RQC), a US-based startup. We implemented our new models within Sandia’s PyGSTi open-source code, and tested them experimentally on the RQC device by probing crosstalk. We found two major results: first, our schema worked and is viable for further development; second, while the Rigetti device is indeed a “real” 8-qubit quantum processor, its behavior fluctuated significantly over time while we were experimenting with it and this drift made it difficult to fit our models of crosstalk to the data.

More Details

Detecting and tracking drift in quantum information processors

Nature Communications

Proctor, Timothy J.; Revelle, Melissa R.; Nielsen, Erik N.; Rudinger, Kenneth M.; Lobser, Daniel L.; Maunz, Peter; Blume-Kohout, Robin J.; Young, Kevin

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

More Details

Probing quantum processor performance with pyGSTi

Quantum Science and Technology

Nielsen, Erik N.; Rudinger, Kenneth M.; Proctor, Timothy J.; Russo, Antonio R.; Young, Kevin; Blume-Kohout, Robin J.

PyGSTi is a Python software package for assessing and characterizing the performance of quantum computing processors. It can be used as a standalone application, or as a library, to perform a wide variety of quantum characterization, verification, and validation (QCVV) protocols on as-built quantum processors. We outline pyGSTi's structure, and what it can do, using multiple examples. We cover its main characterization protocols with end-to-end implementations. These include gate set tomography, randomized benchmarking on one or many qubits, and several specialized techniques. We also discuss and demonstrate how power users can customize pyGSTi and leverage its components to create specialized QCVV protocols and solve user-specific problems.

More Details

Operational, gauge-free quantum tomography

Quantum

Matteo, Olivia D.; Gamble, John; Granade, Chris; Rudinger, Kenneth M.; Wiebe, Nathan

As increasingly impressive quantum information processors are realized in laboratories around the world, robust and reliable characterization of these devices is now more urgent than ever. These diagnostics can take many forms, but one of the most popular categories is tomography, where an underlying parameterized model is proposed for a device and inferred by experiments. Here, we introduce and implement efficient operational tomography, which uses experimental observables as these model parameters. This addresses a problem of ambiguity in representation that arises in current tomographic approaches (the gauge problem). Solving the gauge problem enables us to efficiently implement operational tomography in a Bayesian framework computationally, and hence gives us a natural way to include prior information and discuss uncertainty in fit parameters. We demonstrate this new tomography in a variety of different experimentally-relevant scenarios, including standard process tomography, Ramsey interferometry, randomized benchmarking, and gate set tomography.

More Details

Direct Randomized Benchmarking for Multiqubit Devices

Physical Review Letters

Proctor, Timothy J.; Carignan-Dugas, Arnaud; Rudinger, Kenneth M.; Nielsen, Erik N.; Blume-Kohout, Robin J.; Young, Kevin

Benchmarking methods that can be adapted to multiqubit systems are essential for assessing the overall or "holistic" performance of nascent quantum processors. The current industry standard is Clifford randomized benchmarking (RB), which measures a single error rate that quantifies overall performance. But, scaling Clifford RB to many qubits is surprisingly hard. It has only been performed on one, two, and three qubits as of this writing. This reflects a fundamental inefficiency in Clifford RB: the n-qubit Clifford gates at its core have to be compiled into large circuits over the one- and two-qubit gates native to a device. As n grows, the quality of these Clifford gates quickly degrades, making Clifford RB impractical at relatively low n. In this Letter, we propose a direct RB protocol that mostly avoids compiling. Instead, it uses random circuits over the native gates in a device, which are seeded by an initial layer of Clifford-like randomization. We demonstrate this protocol experimentally on two to five qubits using the publicly available ibmqx5. We believe this to be the greatest number of qubits holistically benchmarked, and this was achieved on a freely available device without any special tuning up. Our protocol retains the simplicity and convenient properties of Clifford RB: it estimates an error rate from an exponential decay. But, it can be extended to processors with more qubits - we present simulations on 10+ qubits - and it reports a more directly informative and flexible error rate than the one reported by Clifford RB. We show how to use this flexibility to measure separate error rates for distinct sets of gates, and we use this method to estimate the average error rate of a set of cnot gates.

More Details

What Randomized Benchmarking Actually Measures

Physical Review Letters

Proctor, Timothy J.; Rudinger, Kenneth M.; Young, Kevin; Sarovar, Mohan S.; Blume-Kohout, Robin J.

Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not a well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. These theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.

More Details

Experimental Demonstration of a Cheap and Accurate Phase Estimation

Physical Review Letters

Rudinger, Kenneth M.; Kimmel, Shelby; Lobser, Daniel L.; Maunz, Peter

We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb+ ion qubit. We show this phase can be estimated with an uncertainty below 4×10-4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.

More Details

Efficient Gate Set Tomography on a Multi-Qubit Superconducting Processor

Nielsen, Erik N.; Rudinger, Kenneth M.; Blume-Kohout, Robin J.; Bestwick, Andrew B.; Bloom, Benjamin B.; Block, Maxwell B.; Caldwell, Shane M.; Curtis, Michael J.; Hudson, Alex H.; Orgiazzi, Jean-Luc O.; Papageorge, Alexander P.; Polloreno, Anthony P.; Reagor, Matt R.; Rubin, Nicholas R.; Scheer, Michael S.; Selvanayagam, Michael S.; Sete, Eyob S.; Sinclair, Rodney S.; Smith, Robert S.; Vahidpour, Mehrnoosh V.; Villiers, Marius V.; Zeng, William J.; Rigetti, Chad R.

Abstract not provided.

Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

Nature Communications

Blume-Kohout, Robin J.; Gamble, John K.; Nielsen, Erik N.; Rudinger, Kenneth M.; Mizrahi, Jonathan; Fortier, Kevin M.; Maunz, Peter

Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if - and only if - the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10-4).

More Details

Optimization of a solid-state electron spin qubit using gate set tomography

New Journal of Physics

Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; Rudinger, Kenneth M.; Gamble, John K.; Nielsen, Erik N.; Laucht, Arne; Simmons, Stephanie; Kalra, Rachpon; Dzurak, Andrew S.; Morello, Andrea

State of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate set tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereas GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of , an improvement on the previous value of . Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.

More Details

Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned

Maunz, Peter L.; Blume-Kohout, Robin J.; Blain, Matthew G.; Benito, Francisco B.; Berry, Christopher W.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Dagel, Amber L.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Lobser, Daniel L.; Mizrahi, Jonathan M.; Nielsen, Erik N.; Resnick, Paul J.; Rembetski, John F.; Rudinger, Kenneth M.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Stick, Daniel L.

Abstract not provided.

Versatile Formal Methods Applied to Quantum Information

Witzel, Wayne W.; Rudinger, Kenneth M.; Sarovar, Mohan S.

Using a novel formal methods approach, we have generated computer-veri ed proofs of major theorems pertinent to the quantum phase estimation algorithm. This was accomplished using our Prove-It software package in Python. While many formal methods tools are available, their practical utility is limited. Translating a problem of interest into these systems and working through the steps of a proof is an art form that requires much expertise. One must surrender to the preferences and restrictions of the tool regarding how mathematical notions are expressed and what deductions are allowed. Automation is a major driver that forces restrictions. Our focus, on the other hand, is to produce a tool that allows users the ability to con rm proofs that are essentially known already. This goal is valuable in itself. We demonstrate the viability of our approach that allows the user great exibility in expressing state- ments and composing derivations. There were no major obstacles in following a textbook proof of the quantum phase estimation algorithm. There were tedious details of algebraic manipulations that we needed to implement (and a few that we did not have time to enter into our system) and some basic components that we needed to rethink, but there were no serious roadblocks. In the process, we made a number of convenient additions to our Prove-It package that will make certain algebraic manipulations easier to perform in the future. In fact, our intent is for our system to build upon itself in this manner.

More Details

Turbocharging Quantum Tomography

Blume-Kohout, Robin J.; Gamble, John K.; Nielsen, Erik N.; Maunz, Peter L.; Scholten, Travis L.; Rudinger, Kenneth M.

Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

More Details

Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks

Journal of Computational and Theoretical Nanoscience

Rudinger, Kenneth M.; Gamble, John K.; Bach, Eric B.; Friesen, Mark F.; Joynt, Robert J.; Coppersmith, S.N.C.

Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erences in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.

More Details
102 Results
102 Results