Publications

7 Results
Skip to search filters

A physics-based device model of transient neutron damage in bipolar junction transistors

IEEE Transactions on Nuclear Science

Keiter, Eric R.; Russo, Thomas V.; Hembree, Charles E.; Kambour, Kenneth E.

For the purpose of simulating the effects of neutron radiation damage on bipolar circuit performance, a bipolar junction transistor (BJT) compact model incorporating displacement damage effects and rapid annealing has been developed. A physics-based approach is used to model displacement damage effects, and this modeling approach is implemented as an augmentation to the Gummel-Poon BJT model. The model is presented and implemented in the Xyce circuit simulator, and is shown to agree well with experiments and TCAD simulation, and is shown to be superior to a previous compact modeling approach. © 2010 IEEE.

More Details

Theory of optically-triggered electrical breakdown of semiconductors

Hjalmarson, Harold P.; Kambour, Kenneth E.; Hjalmarson, Harold P.

In this paper, we describe a rate equation approach that leads to new insights about electrical breakdown in insulating and semiconducting materials. In this approach, the competition between carrier generation by impact ionization and carrier recombination by Auger and defect recombination leads to steady state solutions for the carrier generation rate, and it is the accessibility of these steady state solutions, for a given electric field, that governs whether breakdown does or does not occur. This approach leads to theoretical definitions for not only the intrinsic breakdown field but also other characteristic quantities. Results obtained for GaAs using a carrier distribution function calculated by both a Maxwellian approximation and an ensemble Monte Carlo method will be discussed.

More Details
7 Results
7 Results