Publications

4 Results
Skip to search filters

Modeling the viscoplastic behavior of a semicrystalline polymer

International Journal of Solids and Structures

Cundiff, Kenneth N.; Ayoub, Georges A.; Benzerga, Amine B.

In this study, a complex constitutive relation is identified using inverse modeling with the nominal mechanical response as sole experimental input. The methodology is illustrated for a semicrystalline thermoplastic in the presence of strain localization at finite deformations. The experimental database includes cylindrical tensile bars, compression pins and round notched bars loaded at strain rates spanning up to five decades and temperatures below and above Tg. The data is organized into a calibration set and a validation set. The response of tensile specimens is determined using finite element analyses and a two-phase constitutive relation for semicrystalline polymers that accounts for temperature- and rate-sensitive plastic flow, pressure-sensitivity, small-strain softening and large-strain orientational hardening of the amorphous phase, along with the evolution of crystallinity. The large number of constitutive parameters is identified using an optimization tool coupled with the finite element solver and the calibration set from experiments. The methodology is shown to be successful in predicting the response of round notched bars and replicating the effects of temperature and strain rate on the severity of necking in tensile bars. The proposed model identification strategy is both simple and effective in comparison with other elaborate methods that attempt to access intrinsic behavior directly from high-fidelity experimental measurements.

More Details

Library of Advanced Materials for Engineering (LAM) 5.8

Lester, Brian T.; Vignes, Chet V.; Scherzinger, William M.; Long, Kevin N.; Reedlunn, Benjamin R.; Cundiff, Kenneth N.

Accurate and efficient constitutive modeling remains a cornerstone issue for solid mechanics analysis. Over the years, the LAMÉ advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAMÉ library in application, this effort seeks to document and verify the various models in the LAMÉ library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

More Details

Calibrating the SPECTACULAR constitutive model using legacy Sandia data for two filled epoxy systems: 828/CTBN/DEA/GMB and 828/DEA/GMB

Cundiff, Kenneth N.

The SPECTACULAR model is a development extension of the Simplified Potential Energy Clock (SPEC) model. Both models are nonlinear viscoelastic constitutive models used to predict a wide range of time-dependent behaviors in epoxies and other glass-forming materials. This report documents the procedures used to generate SPECTACULAR calibrations for two particulate-filled epoxy systems, 828/CTBN/DEA/GMB and 828/DEA/GMB. No previous SPECTACULAR or SPEC calibration exists for 828/CTBN/DEA/GMB, while a legacy SPEC calibration exists for 828/DEA/GMB. To generate the SPECTACULAR calibrations, a step-by-step procedure was executed to determine parameters in groups with minimal coupling between parameter groups. This procedure has often been deployed to calibrate SPEC, therefore the resulting SPECTACULAR calibration is backwards compatible with SPEC (i.e. none of the extensions specific to SPECTACULAR are used). The calibration procedure used legacy Sandia experimental data stored on the Polymer Properties Database website. The experiments used for calibration included shear master curves, isofrequency temperature sweeps under oscillatory shear, the bulk modulus at room temperature, the thermal strain during a temperature sweep, and compression through yield at multiple temperatures below the glass transition temperature. Overall, the calibrated models fit the experimental data remarkably well. However, the glassy shear modulus varies depending on the experiment used to calibrate it. For instance, the shear master curve, isofrequency temperature sweep under oscillatory shear, and the Young's modulus in glassy compression yield values for the glassy shear modulus at the reference temperature that vary by as much as 15 %. Also, for 828/CTBN/DEA/GMB, the temperature dependence of the glassy shear modulus when fit to the Young's modulus at different temperatures is approximately four times larger than when it is determined from the isofrequency temperature sweep under oscillatory shear. For 828/DEA/GMB, the temperature dependence of the shear modulus determined from the isofrequency temperature sweep under oscillatory shear accurately predicts the Young's modulus at different temperatures. When choosing values for the shear modulus, fitting the glassy compression data was prioritized. The new and legacy calibrations for 828/DEA/GMB are similar and appear to have been calibrated from the same data. However, the new calibration improves the fit to the thermal strain data. In addition to the standard calibrations, development calibrations were produced that take advantage of development features of SPECTACULAR , including an updated equilibrium Helmholtz free energy that eliminates undesirable behavior found in previous work. In addition to the previously mentioned experimental data, the development calibrations require data for the heat capacity during a stress-free temperature sweep to calibrate thermal terms.

More Details

Constitutive Model Development for Aging Polymer Encapsulants (ASC P&EM FY2021 L2 Milestone 7836)

Cundiff, Kenneth N.; Long, Kevin N.; Kropka, Jamie M.; Carroll, Shianne C.; Groves, Catherine G.

This SAND report fulfills the completion requirements for the ASC Physics and Engineering Modeling Level 2 Milestone 7836 during Fiscal Year 2021. The Sandia Simplified potential energy clock (SPEC) non-linear viscoelastic constitutive model was developed to predict a whole host of polymer glass physical behaviors in order to provide a tool to assess the effects of stress on these materials over their lifecycle. Polymer glasses are used extensively in applications such as electronics packaging, where encapsulants and adhesives can be critical to device performance. In this work, the focus is on assessing the performance of the model in predicting material evolution associated with long-term physical aging, an area that the model has not been fully vetted in. These predictions are key to utilizing models to help demonstrate electronics packaging component reliability over decades long service lives, a task that is very costly and time consuming to execute experimentally. The initiating hypothesis for the work was that a model calibration process can be defined that enables confidence in physical aging predictions under ND relevant environments and timescales without sacrificing other predictive capabilities. To test the hypothesis, an extensive suite of calibration and aging data was assembled from a combination of prior work and collaborating projects (Aging and Lifetimes as well as the DoD Joint Munitions Program) for two mission relevant epoxy encapsulants, 828DGEBA/DEA and 828DGEBA/T403. Multiple model calibration processes were developed and evaluated against the entire set of data for each material. A qualitative assessment of each calibration's ability to predict the wide range of aging responses was key to ranking the calibrations against each other. During this evaluation, predictions that were identified as non-physical, i.e., demonstrated something that was qualitatively different than known material behavior, were heavily weighted against the calibration performance. Thus, unphysical predictions for one aspect of aging response could generate a lower overall rating for a calibration process even if that process generated better quantitative predictions for another aspect of aging response. This insurance that all predictions are qualitatively correct is important to the overall aim of utilizing the model to predict residual stress evolution, which will depend on the interplay amongst the different material aging responses. The DSC-focused calibration procedure generated the best all-around aging predictions for both materials, demonstrating material models that can qualitatively predict the whole host of different physical aging responses that have been measured. This step forward in predictive capability comes from an unanticipated source, utilization of calorimetry measurements to specify model parameters. The DSC-focused calibration technique performed better than compression-focused techniques that more heavily weigh measurements more closely related to the structural responses to be predicted. Indeed, the DSC-focused calibration procedure was only possible due to recent incorporation of the enthalpy and heat capacity features into SPEC that was newly verified during this L2 milestone. Fundamentally similar aspects of the two material model calibrations as well as parametric studies to assess sensitives of the aging predictions are discussed within the report. A perspective on the next steps to the overall goal of residual stress evolution predictions under stockpile conditions closes the report.

More Details
4 Results
4 Results