Publications

98 Results
Skip to search filters

CSP Historical Library Archive Extension Project Final Report

Armijo, Kenneth M.

This work details the development of a concentrating solar power (CSP) and thermal (CST) library archive. This work included digitization of one-of-a-kind documents that could be degraded or destroyed over time. Sandia National Laboratories (SNL) National Solar Thermal Test Facility (NSTTF) and Sandia?s Technical Library departments collaborated to establish and maintain the first and only digital collection in the world of Concentrating Solar Power (CSP) related historical documents. These date back to the CSP program inception here at Sandia in the early 1970?s thru to the present.

More Details

Vapor transport analysis of a chloride molten salt flow control valve

AIP Conference Proceedings

Armijo, Kenneth M.; Mendoza, Hector M.; Parish, Jeffrey

This investigation explores thermal-fluid flow phenomena in a proportional flow control valve (FCV) within a 2 in. ID high-temperature piping transport system. The FCVs are critical components to ensure flexible nominal operation of a 2 MWth concentrating solar power (CSP) pilot-scale system in present development at Sandia National Laboratories (SNL). A computational fluid dynamics (CFD) / finite element analysis (FEA) model was developed in ANSYS that investigates multifluid phase-change transport within various sections of an FCV to explore plating and subsequent thermal-mechanical stress challenges that can exist with operations as high as 730°C. Results from the thermal-fluid model in development suggest salt vapor phase change in the N2 gas purge lines as low as approximately 476°C, which can have a negative impact on valve reliability.

More Details

Analysis of a chloride molten salt pump and tank interface for high-temperature operation

AIP Conference Proceedings

Charley, Derrick; Armijo, Kenneth M.; Mendoza, Hector M.

In this investigation, heat transfer analysis of cold and hot pump-tank interfaces for a 2 MWth pilot-scale system is assessed using a developed computational fluid dynamics (CFD) model using ANSYS Fluent. A DOE Generation 3 concentrating solar power (CSP) ternary chloride molten salt mixture is used as the working fluid of each system and evaluated at different temperatures and pressures. In this CFD model work an analysis was performed for a pump assembly at the interface between the test loop and a storage tank. The model was developed for three scenarios with molten salt inlet temperatures set at 500 °C, 720 °C, and 730 °C. The real-world complex geometry was simplified and evaluated as a two- dimensional model with the purpose of estimating overall heat transfer and velocity profiles for the respective system configurations. Preliminary results indicate that pump field insulation absorbs most of the heat from radiating from the molten salt region at a max temperature of 39.48 °C and that heat transfer within the N2 ullage gas region is primarily due to natural convection and radiation.

More Details

Permitting for a Gen 3 pilot-scale sodium and molten salt system

AIP Conference Proceedings

Madden, Dimitri A.; Armijo, Kenneth M.; Winckel, Rip

The development of a Generation 3 Liquid-Pathway, Pilot-scale sodium and molten chloride salt concentrating solar power system at Sandia National Laboratories requires extensive permitting to ensure code and environmental safety & health compliance for nominal, safe operation. This includes permitting for National Environmental Policy Act, U.S. Airforce approvals, and abiding by the National Fire Protection Association Life Safety Code. This work also details the failure modes effects analysis procedures to address design engineering and administration controls for technical risks. To facilitate permitting and safety procedures, staged sodium spray and pool fire variants were demonstrated. Soda ash extinguishing agents were utilized to demonstrate fire mitigation by Fire Department personnel. For this work, temperature data was measured for characterizing sodium fire temperatures and the zone of influence to provide PPE level information to emergency response personnel.

More Details

Ganged-PV System Evaluation

Armijo, Kenneth M.; Overacker, Aaron A.; Madden, Dimitri A.; Clair, Jim C.

The following report contains data and data summaries collected for the SkySun LLC elevated Ganged PV arrays. These arrays were fabricated as a series of PV panels in various orientations, suspended by cables, at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories (SNL). Starting in February of 2021, Sandia personnel have collected power and accelerometer data for these arrays to assess design and operational efficacy of varying ganged- PV configurations. The purpose of this power data collection was to see how the various array orientations compare in power collection capability depending on the time of day, year, and the specific daily solar direct normal irradiance (DNI). The power data was collected as a measurement of the power output from the various series strings. The project team measured direct current (DC) voltage and current from the respective arrays. The accelerometer data was collected with the purpose of demonstrating potential destructive mode shapes that could take place with each of the arrays when exposed to high winds. This allowed the team to evaluate whether impacts with respect to specific array orientations using suspended cables is a safe design. All data collection was performed during calendar year 2021.

More Details

Operational modes of a 2.0 MWth chloride molten-salt pilot-scale system

AIP Conference Proceedings

Armijo, Kenneth M.; Carlson, Matthew D.; Dorsey, Dwight S.; Ortega, J.; Madden, Dimitri A.; Christian, Joshua M.; Turchi, Craig S.

The limit of traditional solar-salt thermal stability is around 600 °C with ambient air as the cover gas. Nitrate molten salt concentrating solar power (CSP) systems are currently deployed globally and are considered to be state-of the art heat transfer fluids (HTFs) for present day high-temperature operation. However, decomposition challenges occur with these salts for operation beyond 600. Although slightly higher limits may be possible with solar salt, to fully realize SunShot efficiency goals of $15/kWhth HTFs and an LCOE of 6¢/kWh, molten-salt technologies working at higher temperatures (e.g., 650 °C to 750 °C) will require an alternative salt chemistry composition, such as chlorides. In this investigation a 2.0MWth Pilot-scale CSP plant design is developed to assess thermodynamic performance potential for operation up to 720 . Here, an Engineering Equation Solver (EES) model is developed with respect to 14 state-points from the base of a solar tower at the Sandia National Laboratories, National Solar Thermal Test Facility (NSTTF), to solar receiver mounted 120 ft. above the ground. The system design considers a ternary chloride ternary chloride (20%NaCl/40%MgCl/40%KCl by mol%) salt as the HTF, with 6 hrs. of storage and a 1 MWth primary salt to sCO2 heat exchanger. Preliminary system modelling results indicate a minimum non-dimensional Cv of 60 required for both cold and hot-side throttle recirculation valves for the operational pump operating between speeds of 1800 and 2400 RPM. Further receiver comparison study results suggest that the ternary salt requires an average 15.2% higher receiver flux with a slightly lower calculated receiver efficiency when compared to a binary carnelite salt to achieve a 2.0 MWth desired input power design.

More Details

Thermal shock resistance of multilayer silicon carbide receiver tubes for 800oC molten salt concentrating solar power application

AIP Conference Proceedings

Armijo, Kenneth M.; Walker, Matthew W.; Christian, Joshua M.; Madden, Dimitri A.; Stavig, Mark E.; Oliverio, Steven; Feinroth, Herbert

CSP power tower receiver systems during rapid transient weather periods can be vulnerable to thermal shock conditions from rain that which can facilitate the onset of leaks and failures that can have catastrophic consequences. Silicon carbide (SiC) materials have attractive receiver application characteristics for being light weight, having high-strength and excellent thermal shock resistance performance which make them a particularly good fit for receiver absorber materials in CSP. In this investigation, the performance characteristics of Ceramic Tubular Products (CTP) SiC ceramic matrix composite (CMC), multilayered tubes were explored with respect to thermal shock performance for solar receiver applications in next generation CSP plants. Here, thermal shock testing was performed at the Sandia National Laboratories (SNL) Solar Furnace facility using a dynamic stage and thermal shock tube test setup. The tubes tested under incident solar heat flux of 100 W/cm2 were heated with inner tube temperatures reaching approximately 800 °C, with outer temperatures exceeding or just reaching 1000 ℃ for the multilayer and monolithic SiC tubes respectively. The tubes were then quenched with simulated rain. The tubes were then cooled and subjected to hoop stress analysis using an Instron device to assess their subsequent mechanical strength. The on-sun study experimental results indicate an average of 24.2% and 97% higher hoop strength for the CMC tubes than those composed of monolithic SiC and aluminum oxide (Al2O3) respectively.

More Details

High Temperature Silicon Carbide Receiver Tubes for Concentrating Solar Power

Walker, Matthew W.; Armijo, Kenneth M.; Yellowhair, Julius; Ho, Clifford K.; Bohinsky, Amy B.; Halfinger, Jeff H.; Feinroth, Herb F.

In order for Concentrating Solar Power plants (CSP) to achieve the desired cost breakpoint, significant improvement in performance is required resulting in the need to increase temperatures of fluid systems. A US DOE Small Business Voucher project was established at Sandia to explore the performance characteristics of Ceramic Tubular Products (CTP) silicon carbide TRIPLEX tubes in key categories relating to its performance as a solar receiver in next generation CSP plants. Along these lines, the following research tasks were completed : (1) Solar Spectrum Testing, (2) Corrosion Testing in Molten Chloride Salt, (3) Mechanical Shock Testing, and (4) Thermal Shock Testing. Through the completion of these four tasks, it has been found that the performance of CTP's material across all of these categories is promising, and merits further investigation beyond this initial investigation. Through 50 solar aging cycles, the CTP material exhibited excellent stability to high temperatures in air, exhibited at or above 0.95 absorptance, and had measured emittances within the range of 0.88-0.90. Through molten salt corrosion testing at 750degC it was found that SiC exhibits significantly lower mass change (-- 90 times lower) than Haynes 230 during 108 hours of salt exposure. The CTP TRIPLEX material performed significantly better than the SiC monolithic tube material in mechanical shock testing, breaking at an average height of 3 times that for the monolithic tubes. Through simulated rain thermal shock testing of CTP composite tubes at 800degC it was found that CTP's SiC composite tubes were able to survive thermal shock, while the SiC monolithic tubes did not. ACKNOWLEDGEMENTS * US Department of Energy Office of EERE for sponsorship of this project * Andrew Dawson of the DOE Office of EERE for Project Management, including the excellent technical insights that he provided throughout the project * Ken Armijo lead the Thermal Shock Testing activities * Cliff Ho and Julius Yellowhair led the Solar Spectrum Testing activities * Jeff Halfinger prepared the CTP specimens for each of the research tasks * Herb Feinroth provided guidance and input into the preparation for the test specimens and the associated research tasks * Alan Kruizenga collaborated with CTP to apply for and be awarded this project from DOE EERE. The scope for the project was developed by Alan together with CTP. * Rio Hatton and Jesus Ortega (student interns) helped with portions of the solar simulator testing, reflectance/emittance data collection, and image (including microscope) collection. * Kent Smith helped design and fabricate the high temperature molten salt corrosion setup * Jeff Chames and Javier Cebrian completed the microscopy for the molten salt corrosion test specimens * Amy Bohinsky (student intern) and Kevin Nelson helped complete the mechanical shock testing for the monolithic and composite tubes, including organizing the results for the final report. * Josh Christian and Daniel Ray helped with portions of the Thermal Shock Testing * Mark Stavig completed the polyethylene plug testing associated with the Thermal Shock Testing

More Details

Optical performance modeling and analysis of a tensile ganged heliostat concept

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yellowhair, Julius; Andraka, Charles E.; Armijo, Kenneth M.; Ortega, J.; Clair, Jim

Designs of conventional heliostats have been varied to reduce cost, improve optical performance or both. In one case, reflective mirror area on heliostats has been increased with the goal of reducing the number of pedestals and drives and consequently reducing the cost on those components. The larger reflective areas, however, increase torques due to larger mirror weights and wind loads. Higher cost heavy-duty motors and drives must be used, which negatively impact any economic gains. To improve on optical performance, the opposite may be true where the mirror reflective areas are reduced for better control of the heliostat pointing and tracking. For smaller heliostats, gravity and wind loads are reduced, but many more heliostats must be added to provide sufficient solar flux to the receiver. For conventional heliostats, there seems to be no clear cost advantage of one heliostat design over other designs. The advantage of ganged heliostats is the pedestal and tracking motors are shared between multiple heliostats, thus can significantly reduce the cost on those components. In this paper, a new concept of cable-suspended tensile ganged heliostats is introduced, preliminary analysis is performed for optical performance and incorporated into a 10 MW conceptual power tower plant where it was compared to the performance of a baseline plant with a conventional radially staggered heliostat field. The baseline plant uses conventional heliostats and the layout optimized in System Advisor Model (SAM) tool. The ganged heliostats are suspended on two guide cables. The cables are attached to rotations arms which are anchored to end posts. The layout was optimized offline and then transferred to SAM for performance evaluation. In the initial modeling of the tensile ganged heliostats for a 10 MW power tower plant, equal heliostat spacing along the guide cables was assumed, which as suspected leads to high shading and blocking losses. The goal was then to optimize the heliostat spacing such that annual shading and blocking losses are minimized. After adjusting the spacing on tensile ganged heliostats for minimal blocking losses, the annual block/shading efficiency was greater than 90% and annual optical efficiency of the field became comparable to the conventional field at slightly above 60%.

More Details

On-sun tracking evaluation of a small-scale tensile ganged heliostat prototype

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yellowhair, Julius; Armijo, Kenneth M.; Ortega, J.; Clair, Jim

Various ganged heliostat concepts have been proposed in the past. The attractive aspect of ganged heliostat concepts is multiple heliostats are grouped so that pedestals, tracking drives, and other components can be shared, thus reducing the number of components. The reduction in the number of components is thought to significantly reduce cost. However, since the drives and tracking mechanisms are shared, accurate on-sun tracking of grouped heliostats becomes challenging because the angular degrees-of-freedom are now limited for the multiple number of combined heliostats. In this paper, the preliminary evaluation of the on-sun tracking of a novel tensile-based cable suspended ganged heliostat concept is provided. In this concept, multiple heliostats are attached to two guide cables. The cables are attached to rotation spreader arms which are anchored to end posts on two ends. The guide cables form a catenary which makes tracking on-sun interesting and challenging. Tracking is performed by rotating the end plates that the two cables are attached to and rotating the individual heliostats in one axis. An additional degree-of-freedom can be added by differentially tensioning the two cables, but this may be challenging to do in practice. Manual on-sun tracking was demonstrated on small-scale prototypes. The rotation arms were coarsely controlled with linear actuators, and the individual heliostats were hand-adjusted in local pitch angle and locked in place with set screws. The coarse angle adjustments showed the tracking accuracy was 3-4 milli-radians. However, with better angle control mechanisms the tracking accuracy can be drastically improved. In this paper, we provide tracking data that was collected for a day, which showed feasibility for automated on-sun tracking. The next steps are to implement better angle control mechanisms and develop tracking algorithms so that the ganged heliostats can automatically track.

More Details

Impinging Water Droplets on Inclined Glass Surfaces

Armijo, Kenneth M.; Lance, Blake L.; Ho, Clifford K.

Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that photovoltaic modules and heliostats can be designed to maximize self-cleaning.

More Details

Arc-Fault Primer: Numerical, Analytical, and Experimental Characteristics of Initiation and Sustainment of Arc Plasmas (DRAFT)

Armijo, Kenneth M.; Lavrova, Olga A.; Harrison, Richard K.; Rodriguez, Salvador B.; Johnson, Jay; Schindelholz, Eric J.

While arc-faults are rare in electrical installations, many documented events have led to fires that resulted in significant damage to energy-generation, commercial and residential systems, as well as surrounding structures, in both the United States and abroad. Arc-plasma discharges arise over time due to a variety of reliability issues related to cable material degradation, electrical and mechanical stresses or acute conductive wiring dislocations. These may lead to discontinuity between energized conductors, facilitating arcing events and fires. Arc-flash events rapidly release significant energy in a localized volume, where the electric arc experiences a reduction in resistance. This facilitates a reduction in electrical resistance as the arc temperature and pressure can increase rapidly. Strong pressure waves, electromagnetic interference (EMI), and intense light from an arc pose a threat to electrical worker safety and system equipment. This arc-fault primer provides basic fundamental insight into arc-fault plasma discharges, and an overview of direct current (DC) and alternating current (AC) arc-fault phenomena. This primer also covers pressure waves and EMI arc-fault hazard analyses related to incident energy prediction and potential damage analysis. Mitigation strategies are also discussed related to engineering design and employment of protective devices including arc-fault circuit interrupters (AFCIs). Best practices related to worker safety are also covered, especially as they pertain to electrical codes and standards, particularly Institute of Electrical and Electronics Engineers (IEEE) 1584 and National Fire Protection Agency (NFPA) 70E. Throughout the primer various modelling and test capabilities at Sandia National Laboratories are also covered, especially as they relate to novel methods of arc-fault/arc-flash characterization and mitigation approaches. Herein, this work describes methods for producing and characterizing controlled, sustained arcs at atmospheric pressures as well as methods for mitigation with novel materials.

More Details

Heat Transfer Phenomena in Concentrating Solar Power Systems

Armijo, Kenneth M.; Shinde, Subhash L.

Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

More Details

Phenomenological Studies on Sodium for CSP Applications: A Safety Review

Armijo, Kenneth M.; Andraka, Charles E.

Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.

More Details

Characterization of fire hazards of aged photovoltaic balance-of-systems connectors

2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015

Schindelholz, Eric J.; Yang, Benjamin B.; Armijo, Kenneth M.; McKenzie, Bonnie B.; Taylor, Jason M.; Sorensen, Neil R.; Lavrova, Olga A.

Three balance of systems (BOS) connector designs common to industry were investigated as a means of assessing reliability from the perspective of arc fault risk. These connectors were aged in field and laboratory environments and performance data captured for future development of a reliability model. Comparison of connector resistance measured during damp heat, mixed flowing gas and field exposure in a light industrial environment indicated disparities in performance across the three designs. Performance was, in part, linked to materials of construction. A procedure was developed to evaluate new and aged connectors for arc fault risk and tested for one of the designs. Those connectors exposed to mixed flowing gas corrosion exhibited considerable Joule heating that may enhance arcing behavior, suggesting temperature monitoring as a potential method for arc fault prognostics. These findings, together with further characterization of connector aging, can provide operators of photovoltaic installations the information necessary to develop a data-driven approach to BOS connector maintenance as well as opportunities for arc fault prognostics.

More Details

PV Systems Reliability Final Technical Report

Lavrova, Olga A.; Flicker, Jack D.; Johnson, Jay; Armijo, Kenneth M.; Gonzalez, Sigifredo G.; Schindelholz, Eric J.; Sorensen, Neil R.; Yang, Ben Y.

The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

More Details

Low-Cost Spectral Sensor Development Description

Armijo, Kenneth M.; Yellowhair, Julius

Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

More Details

Characterizing fire danger from low-power photovoltaic arc-faults

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Armijo, Kenneth M.; Johnson, Jay; Hibbs, Michael; Fresquez, Armando J.

While arc-faults are rare in photovoltaic installations, more than a dozen documented arc-faults have led to fires and resulted in significant damage to the PV system and surrounding structures. In the United States, National Electrical Code® (NEC) 690.11 requires a listed arc fault protection device on new PV systems. In order to list new arc-fault circuit interrupters (AFCIs), Underwriters Laboratories created the certification outline of investigation UL 1699B. The outline only requires AFCI devices to be tested at arc powers between 300-900 W; however, arcs of much less power are capable of creating fires in PV systems. In this work we investigate the characteristics of low power (100-300 W) arc-faults to determine the potential for fires, appropriate AFCI trip times, and the characteristics of the pyrolyzation process. This analysis was performed with experimental tests of arc-faults in close proximity to three polymer materials common in PV systems, e.g., polycarbonate, PET, and nylon 6,6. Two polymer geometries were tested to vary the presence of oxygen in the DC arc plasma. The samples were also exposed to arcs generated with different material geometries, arc power levels, and discharge times to identify ignition times. To better understand the burn characteristics of different polymers in PV systems, thermal decomposition of the sheath materials was performed using infrared spectra analysis. Overall a trip time of less than 2 seconds is recommended for the suppression of fire ignition during arc-fault events.

More Details

Parametric study of PV arc-fault generation methods and analysis of conducted DC spectrum

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Johnson, Jay; Armijo, Kenneth M.

Many photovoltaic (PV) direct current (DC) arc-fault detectors use the frequency content of the PV system to detect arcs. The spectral content is influenced by the duration and power of the arc, surrounding insulation material geometry and chemistry, and electrode geometry. A parametric analysis was conducted in order to inform the Underwriters Laboratories (UL) 1699B ('Photovoltaic DC Arc-Fault Circuit Protection') Standards Technical Panel (STP) of improvements to arc-fault generation methods in the certification standard. These recommendations are designed to reduce the complexity of the experimental setup, improve testing repeatability, and quantify the uncertainty of the arc-fault radio frequency (RF) noise generated by different PV arcs in the field. In this investigation, we (a) discuss the differences in establishing and sustaining arc-faults for a number of different test configurations and (b) compare the variability in arc-fault spectral content for each respective test, and analyze the evolution of the RF signature over the duration of the fault; with the ultimate goal of determining the most repeatable, 'worst case' tests for adoption by UL.

More Details

Arc fault risk assessment and degradation model development for photovoltaic connectors

2014 IEEE 40th Photovoltaic Specialist Conference, PVSC 2014

Yang, Benjamin B.; Armijo, Kenneth M.; Harrison, Richard K.; Thomas, Kara E.; Johnson, Jay; Taylor, Jason M.; Sorensen, Neil R.

This work investigates balance of systems (BOS) connector reliability from the perspective of arc fault risk. Accelerated tests were performed on connectors for future development of a reliability model. Thousands of hours of damp heat and atmospheric corrosion tests found BOS connectors to be resilient to corrosion-related degradation. A procedure was also developed to evaluate new and aged connectors for arc fault risk. The measurements show that arc fault risk is dependent on a combination of materials composition as well as design geometry. Thermal measurements as well as optical emission spectroscopy were also performed to further characterize the arc plasma. Together, the degradation model, arc fault risk assessment technique, and characterization methods can provide operators of photovoltaic installations information necessary to develop a data-driven plan for BOS connector maintenance as well as identify opportunities for arc fault prognostics.

More Details

Spectral derates phenomena of atmospheric components on multi-junction CPV technologies

AIP Conference Proceedings

Armijo, Kenneth M.; Harrison, Richard K.; King, Bruce H.; Martin, Jeffrey B.

The solar spectrum varies with atmospheric conditions and composition, and can have significant impacts on the output power performance of each junction in a concentrating solar photovoltaic (CPV) system, with direct implications on the junction that is current-limiting. The effect of changing solar spectrum on CPV module power production has previously been characterized by various spectral performance parameters such as air mass (AM) for both single and multi-junction module technologies. However, examinations of outdoor test results have shown substantial uncertainty contributions by many of these parameters, including air mass, for the determination of projected power and energy production. Using spectral data obtained from outdoor spectrometers, with a spectral range of 336nm-1715nm, this investigation examines precipitable water (PW), aerosol and dust variability effects on incident spectral irradiance. This work then assesses air mass and other spectral performance parameters, including a new atmospheric component spectral factor (ACSF), to investigate iso-cell, stacked multijunction and single-junction c-Si module performance data directly with measured spectrum. This will then be used with MODTRAN5® to determine if spectral composition can account for daily and seasonal variability of the short-circuit current density Jsc and the maximum output power Pmp values. For precipitable water, current results show good correspondence between the modeled atmospheric component spectral factor and measured data with an average rms error of 0.013, for all three iso-cells tested during clear days over a one week time period. Results also suggest average variations in ACSF factors with respect to increasing precipitable water of 8.2%/cmH2O, 1.3%/cmH2O, 0.2%/cmH2O and 1.8%/cmH2O for GaInP, GaAs, Ge and c-Si cells, respectively at solar noon and an AM value of 1.0. For ozone, the GaInP cell had the greatest sensitivity to increasing ozone levels with an ACSF variation of 0.07%/cmO3. For the desert dust wind study, consistent ACSF behavior between all iso-cells and c-Si was found, with only significant reductions beyond 40mph.

More Details
98 Results
98 Results