Members of the Nuclear Criticality Safety (NCS) Program at Sandia National Laboratories (SNL) have updated the suite of benchmark problems developed to validate MCNP6 Version 2.0 for use in NCS applications. The updated NCS benchmark suite adds approximately 600 new benchmarks and includes peer review of all input files by two different NCS engineers (or one NCS engineer and one candidate NCS engineer). As with the originally released benchmark suite, the updated suite covers a broad range of fissile material types, material forms, moderators, reflectors, and neutron energy spectra. The benchmark suite provides a basis to establish a bias and bias uncertainty for use in NCS analyses at SNL.
Using a newly developed coupling of the ElectroMagnetic Plasma In Realistic Environments (EMPIRE) code with the Integrated Tiger Series (ITS) code, radiation environment calculations have been performed. The effort was completed as part of the Saturn Recapitalization (Recap) program that represents activities to upgrade and modernize the Saturn accelerator facility. The radiation environment calculations performed provide baseline results with current or planned hardware in the facility. As facility design changes are proposed and implemented as part of Saturn Recap, calculations of the radiation environment will be performed to understand how the changes impact the output of the Saturn accelerator.
The Saturn accelerator has historically lacked the capability to measure time-resolved spectra for its 3-ring bremsstrahlung x-ray source. This project aimed to create a spectrometer called AXIOM to provide this capability. The project had three major development pillars: hardware, simulation, and unfold code. The hardware consists of a ring of 24 detectors around an existing x-ray pinhole camera. The diagnostic was fielded on two shots at Saturn and over 100 shots at the TriMeV accelerator at Idaho Accelerator Center. A new Saturn x-ray environment simulation was created using measured data to validate. This simulation allows for timeresolved spectra computation to compare the experimental results. The AXIOM-Unfold code is a new parametric unfold code using modern global optimizers and uncertainty quantification. The code was written in Python, uses Gitlab version control and issue tracking, and has been developed with long term code support and maintenance in mind.
To understand the environment where a time-resolved hard x-ray spectrometer (AXIOM) might be fielded, experiments and simulations were performed to analyze the radiation dose environment underneath the Saturn vacuum dome. Knowledge of this environment is critical to the design and placement of the spectrometer. Experiments demonstrated that the machine performance, at least in terms of on-axis dose, has not significantly changed over the decades. Simulations of the off-axis dose were performed to identify possible spectrometer locations of interest. The effects from the source and dome hardware as well as source distributions and angles of incidence on the radiation environment were also investigated. Finally, a unified radiation transport model was developed for two widely used radiation transport codes to investigate the off-axis dose profiles and the time-dependent x-ray energy spectrum. The demonstrated equivalence of the unified radiation transport model between the radiation transport codes allows the team to tie future time-dependent x-ray environment calculations to previous integral simulations for the Saturn facility.
We present the technology-aided computer design (TCAD) device simulation and modeling of a silicon p-i-n diode for detecting time-dependent X-ray radiation. We show that the simulated forward and reverse breakdown current-voltage characteristics agree well with the measured data under nonradiation environment by only calibrating carrier lifetimes for the forward bias case and avalanche model critical fields for the reverse bias condition. Using the calibrated parameters and other nominal material properties, we simulated the radiation responses of the p-i-n diode and compared with experimental data when the diode was exposed to X-ray radiation at Sandia's Saturn facility and the Idaho State University (ISU) TriMeV facility. For Saturn's Gaussian dose-rate pulses, we show three findings from TCAD simulations. First, the simulated photocurrents are in excellent agreement with the measured data for two dose-rate pulses with peak values of 1.16 times 10 -{10} and 1.88 times 10 -{10} rad(Si)/s. Second, the simulation results of high dose-rate pulses predict increased delayed photocurrents with longer time tails in the diode electrical responses due to excess carrier generation. Third, simulated peak values of diode radiation responses versus peak dose rates at different bias conditions provide useful guidance to determine the dose-rate range that the p-i-n diode can reliably detect in experiment. For TriMeV's non-Gaussian dose-rate pulse, our simulated diode response is in decent agreement with the measured data without further calibration. We also studied the effects of device geometry, recombination process, and dose-rate enhancement via TCAD simulations to understand the higher measured response in the time after the peak dose-rate radiation for the p-i-n diode exposed to TriMeV irradiation.
ASTM Committee E10 on Nuclear Technology and Applications develops and maintains many standards that are relevant to the radiation metrology activities in Sandia National Laboratories' Radiation and Electrical Sciences Center. This is particularly true for the reactor facilities and Subcommittee E10.07 on Radiation Dosimetry for Radiation Effects on Materials and Devices. In the past decade, Subcommittee E10.07 has been making substantive changes to the standard widely used to assess radiation hardness to neutron effects in electronics, E722 – Standard Practice for Characterking Neutron Fluence Spectra in Terms of an Equivalent Monoenergetic Neutron Fluence for Radiation-Hardness Testing of Electronics. ASTM Standard E722 describes the method that defines the 1-MeV silicon and the 1-MeV gallium arsenide equivalent fluence radiation damage metrics. An evaluation of the impact of changes to the shape of the 1-MeV silicon equivalent fluence radiation damage metric from the 1985 version (E722-85) to the most recent version (E722-19) is performed.
Unsuccessful attempts by members of the radiation effects community to independently derive the Norgett-Robinson-Torrens (NRT) damage energy factors for silicon in ASTM standard E722-14 led to an investigation of the software coding and data that produced those damage energy factors. The ad hoc collaboration to discover the reason for lack of agreement revealed a coding error and resulted in a report documenting the methodology to produce the response function for the standard. The recommended changes in the NRT damage energy factors for silicon are shown to have significant impact for a narrow energy region of the 1-MeV(Si) equivalent fluence response function. However, when evaluating integral metrics over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in a small decrease in the total 1- MeV(Si) equivalent fluence of ~0.6% compared to the E722-14 response. Response functions based on the newly recommended NRT damage energy factors have been produced and are available for users of both the NuGET and MCNP codes.
The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.
A code for generating MCNP material cards (MatMCNP) has been written and verified for naturally occurring, stable isotopes. The program allows for material specification as either atomic or weight percent (fractions). MatMCNP also permits the specification of enriched lithium, boron, and/or uranium. In addition to producing the material cards for MCNP, the code calculates the atomic (or number) density in atoms/barn-cm as well as the multiplier that should be used to convert neutron and gamma fluences into dose in the material specified.
The impact of recent changes to the ASTM Standard E722 is investigated. The methodological changes in the production of the displacement kerma factors for silicon has significant impact for some energy regions of the 1-MeV(Si) equivalent fluence response function. When evaluating the integral over all neutrons energies in various spectra important to the SNL electronics testing community, the change in the response results in an increase in the total 1-MeV(Si) equivalent fluence of 2 7%. Response functions have been produced and are available for users of both the NuGET and MCNP codes.
Sandia National Laboratories (SNL) has embarked on a program to develop a methodology to use damage relations techniques (alternative experimental facilities, modeling, and simulation) to understand the time-dependent effects in transistors (and integrated circuits) caused by neutron irradiations in the Sandia Pulse Reactor-III (SPR-III) facility. The development of these damage equivalence techniques is necessary since SPR-III was shutdown in late 2006. As part of this effort, the late time {gamma}-ray sensitivity of a single diffusion lot of 2N2222A transistors has been characterized using one of the {sup 60}Co irradiation cells at the SNL Gamma Irradiation Facility (GIF). This report summarizes the results of the experiments performed at the GIF.
Many experimenters at the Annular Core Research Reactor (ACRR) have a need to predict the neutron/gamma environment prior to testing. In some cases, the neutron/gamma environment is needed to understand the test results after the completion of an experiment. In an effort to satisfy the needs of experimenters, a model of the ACRR was developed for use with the Monte Carlo N-Particle transport codes MCNP [Br03] and MCNPX [Wa02]. The model contains adjustable safety, transient, and control rods, several of the available spectrum-modifying cavity inserts, and placeholders for experiment packages. The ACRR model was constructed such that experiment package models can be easily placed in the reactor after being developed as stand-alone units. An addition to the 'standard' model allows the FREC-II cavity to be included in the calculations. This report presents the MCNP/MCNPX model of the ACRR. Comparisons are made between the model and the reactor for various configurations. Reactivity worth curves for the various reactor configurations are presented. Examples of reactivity worth calculations for a few experiment packages are presented along with the measured reactivity worth from the reactor test of the experiment packages. Finally, calculated neutron/gamma spectra are presented.
The Radiation Effects Sciences (RES) program is responsible for conducting Neutron Gamma Energy Transport (NuGET) code validation. In support of this task, a series of experiments were conducted in the annular core research reactor (ACRR) to investigate the modification of the incident neutron/gamma environment by aluminum (Al6061) and high-density polyethylene (HDPE) spheres with 4-in and 7-in-diameter. The experiment series described in this report addresses several NuGET validation concerns. The validation experiment series also addresses the design and execution of proper reactor testing to match the hostile radiation environments and to match the component stresses that arise from the hostile radiation environments. This report summarizes the RES Validation: n/{gamma} Attenuation through Materials, Environments 1A, experiments conducted at the ACRR in FY 2003 using ACRR Experiment Plans 933 and 949.
Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by postexperiment analysis because the TLD reading system cannot distinguish between photon- and neutron-produced response. Using a model of an aluminum-equilibrated TLD-400 (CaF{sub 2}:Mn) chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determine the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.
Thermoluminescent dosimeters (TLDs), particularly CaF{sub 2}:Mn, are often used as photon dosimeters in mixed (n/{gamma}) field environments. In these mixed field environments, it is desirable to separate the photon response of a dosimeter from the neutron response. For passive dosimeters that measure an integral response, such as TLDs, the separation of the two components must be performed by post-experiment analysis because the TLD reading system cannot distinguish between photon and neutron produced response. Using a model of an aluminum-equilibrated TLD-400 chip, a systematic effort has been made to analytically determine the various components that contribute to the neutron response of a TLD reading. The calculations were performed for five measured reactor neutron spectra and one theoretical thermal neutron spectrum. The five measured reactor spectra all have dosimetry quality experimental values for aluminum-equilibrated TLD-400 chips. Calculations were used to determined the percentage of the total TLD response produced by neutron interactions in the TLD and aluminum equilibrator. These calculations will aid the Sandia National Laboratories-Radiation Metrology Laboratory (SNL-RML) in the interpretation of the uncertainty for TLD dosimetry measurements in the mixed field environments produced by SNL reactor facilities.