In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557–3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.
Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.
ASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA.
In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization.
A two-dimensional, multi-physics computational model based on the finite-element method is developed for simulating the process of solar thermochemical splitting of carbon dioxide (CO{sub 2}) using ferrites (Fe{sub 3}O{sub 4}/FeO) and a counter-rotating-ring receiver/recuperator or CR5, in which carbon monoxide (CO) is produced from gaseous CO{sub 2}. The model takes into account heat transfer, gas-phase flow and multiple-species diffusion in open channels and through pores of the porous reactant layer, and redox chemical reactions at the gas/solid interfaces. Results (temperature distribution, velocity field, and species concentration contours) computed using the model in a case study are presented to illustrate model utility. The model is then employed to examine the effects of injection rates of CO{sub 2} and argon neutral gas, respectively, on CO production rate and the extent of the product-species crossover.
The objectives of this presentation are: (1) To develop and validate a two-phase, three-dimensional transport modelfor simulating PEM fuel cell performance under a wide range of operating conditions; (2) To apply the validated PEM fuel cell model to improve fundamental understanding of key phenomena involved and to identify rate-limiting steps and develop recommendations for improvements so as to accelerate the commercialization of fuel cell technology; (3) The validated PEMFC model can be employed to improve and optimize PEM fuel cell operation. Consequently, the project helps: (i) address the technical barriers on performance, cost, and durability; and (ii) achieve DOE's near-term technical targets on performance, cost, and durability in automotive and stationary applications.
A simplified model was developed and is presented in this report for simulating thermal transport coupled with chemical reactions that lead to the pyrotechnic ignition of TiH1.65/KClO4 powder. The model takes into account Joule heating via a bridgewire, thermal contact resistance at the wire/powder interface, convective heat loss to the surroundings, and heat released from the TiH1.65- and KClO4-decomposition and TiO2-oxidation reactions. Chemical kinetic sub-models were put forth to describe the chemical reaction rate(s) and quantify the resultant heat release. The simplified model predicts pyrotechnic ignition when heat from the pyrotechnic reactions is accounted for. Effects of six key parameters on ignition were examined. It was found that the two reaction-rate parameters and the thermal contact resistance significantly affect the dynamic ignition process whereas the convective heat transfer coefficient essentially has no effect on the ignition time. Effects of the initial/ambient temperature and electrical current load through the wire are as expected. Ignition time increases as the initial/ambient temperature is lowered or the wire current load is reduced. Lastly, critical needs such as experiments to determine reaction-rate and other model-input parameters and to measure temperature profiles, time to ignition and burn-rate data for model validation as well as efforts in incorporating reaction-rate dependency on pressure are pointed out.
This document contains a summary of the work performed under the LDRD project entitled 'Interface Physics in Microporous Media'. The presence of fluid-fluid interfaces, which can carry non-zero stresses, distinguishes multiphase flows from more readily understood single-phase flows. In this work the physics active at these interfaces has been examined via a combined experimental and computational approach. One of the major difficulties of examining true microporous systems of the type found in filters, membranes, geologic media, etc. is the geometric uncertainty. To help facilitate the examination of transport at the pore-scale without this complication, a significant effort has been made in the area of fabrication of both two-dimensional and three-dimensional micromodels. Using these micromodels, multiphase flow experiments have been performed for liquid-liquid and liquid-gas systems. Laser scanning confocal microscopy has been utilized to provide high resolution, three-dimensional reconstructions as well as time resolved, two-dimensional reconstructions. Computational work has focused on extending lattice Boltzmann (LB) and finite element methods for probing the interface physics at the pore scale. A new LB technique has been developed that provides over 100x speed up for steady flows in complex geometries. A new LB model has been developed that allows for arbitrary density ratios, which has been a significant obstacle in applying LB to air-water flows. A new reduced order model has been developed and implemented in finite element code for examining non-equilibrium wetting in microchannel systems. These advances will enhance Sandia's ability to quantitatively probe the rich interfacial physics present in microporous systems.
This report documents work done for a late-start LDRD project, which was carried out during the last quarter of FY07. The objective of this project was to experimentally explore the feasibility of converting vegetable (e.g., soybean) oils to biodiesel by employing slit-channel reactors and solid catalysts. We first designed and fabricated several slit-channel reactors with varying channel depths, and employed them to investigate the improved performance of slit-channel reactors over traditional batch reactors using a NaOH liquid catalyst. We then evaluated the effectiveness of several solid catalysts, including CaO, ZnO, MgO, ZrO{sub 2}, calcium gluconate, and heteropolyacid or HPA (Cs{sub 2.5}H{sub 0.5}PW{sub 12}O{sub 40}), for catalyzing the soybean oil-to-biodiesel transesterification reaction. We found that the slit-channel reactor performance improves as channel depth decreases, as expected; and the conversion efficiency of a slit-channel reactor is significantly higher when its channel is very shallow. We further confirmed CaO as having the highest catalytic activity among the solid catalysts tested, and we demonstrated for the first time calcium gluconate as a promising solid catalyst for converting soybean oil to biodiesel, based on our preliminary batch-mode conversion experiments.
In this report, we document the accomplishments in our Laboratory Directed Research and Development project in which we employed a technical approach of combining experiments with computational modeling and analyses to elucidate the performance of hydrogen-fed proton exchange membrane fuel cells (PEMFCs). In the first part of this report, we document our focused efforts on understanding water transport in and removal from a hydrogen-fed PEMFC. Using a transparent cell, we directly visualized the evolution and growth of liquid-water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. We further carried out a detailed experimental study to observe, via direct visualization, the formation, growth, and instability of water droplets at the GDL/GFC interface using a specially-designed apparatus, which simulates the cathode operation of a PEMFC. We developed a simplified model, based on our experimental observation and data, for predicting the onset of water-droplet instability at the GDL/GFC interface. Using a state-of-the-art neutron imaging instrument available at NIST (National Institute of Standard and Technology), we probed liquid-water distribution inside an operating PEMFC under a variety of operating conditions and investigated effects of evaporation due to local heating by waste heat on water removal. Moreover, we developed computational models for analyzing the effects of micro-porous layer on net water transport across the membrane and GDL anisotropy on the temperature and water distributions in the cathode of a PEMFC. We further developed a two-phase model based on the multiphase mixture formulation for predicting the liquid saturation, pressure drop, and flow maldistribution across the PEMFC cathode channels. In the second part of this report, we document our efforts on modeling the electrochemical performance of PEMFCs. We developed a constitutive model for predicting proton conductivity in polymer electrolyte membranes and compared model prediction with experimental data obtained in our laboratory and from literature. Moreover, we developed a one-dimensional analytical model for predicting electrochemical performance of an idealized PEMFC with small surface over-potentials. Furthermore, we developed a multi-dimensional computer model, which is based on the finite-element method and a fully-coupled implicit solution scheme via Newton's technique, for simulating the performance of PEMFCs. We demonstrated utility of our finite-element model by comparing the computed current density distribution and overall polarization with those measured using a segmented cell. In the last part of this report, we document an exploratory experimental study on MEA (membrane electrode assembly) degradation.