Publications

8 Results
Skip to search filters

An Optical Flow Approach to Tracking Ship Track Behavior Using GOES-R Satellite Imagery

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Shand, Lyndsay S.; Larson, Kelsie M.; Roesler, Erika L.; lyons, don l.; Gray, Skyler D.

Ship emissions can form linear cloud structures, or ship tracks, when atmospheric water vapor condenses on aerosols in the ship exhaust. These structures are of interest because they are observable and traceable examples of MCB, a mechanism that has been studied as a potential approach for solar climate intervention. Ship tracks can be observed throughout the diurnal cycle via space-borne assets like the advanced baseline imagers on the national oceanic and atmospheric administration geostationary operational environmental satellites, the GOES-R series. Due to complex atmospheric dynamics, it can be difficult to track these aerosol perturbations over space and time to precisely characterize how long a single emission source can significantly contribute to indirect radiative forcing. We propose an optical flow approach to estimate the trajectories of ship-emitted aerosols after they begin mixing with low boundary layer clouds using GOES-17 satellite imagery. Most optical flow estimation methods have only been used to estimate large scale atmospheric motion. We demonstrate the ability of our approach to precisely isolate the movement of ship tracks in low-lying clouds from the movement of large swaths of high clouds that often dominate the scene. This efficient approach shows that ship tracks persist as visible, linear features beyond 9 h and sometimes longer than 24 h.

More Details

Local limits of detection for anthropogenic aerosol-cloud interactions

Shand, Lyndsay S.; Larson, Kelsie M.; Staid, Andrea S.; Roesler, Erika L.; Lyons, Donald A.; Simonson, Katherine M.; Patel, Lekha P.; Hickey, James J.; Gray, Skyler D.

Ship tracks are quasi-linear cloud patterns produced from the interaction of ship emissions with low boundary layer clouds. They are visible throughout the diurnal cycle in satellite images from space-borne assets like the Advanced Baseline Imagers (ABI) aboard the National Oceanic and Atmospheric Administration Geostationary Operational Environmental Satellites (GOES-R). However, complex atmospheric dynamics often make it difficult to identify and characterize the formation and evolution of tracks. Ship tracks have the potential to increase a cloud's albedo and reduce the impact of global warming. Thus, it is important to study these patterns to better understand the complex atmospheric interactions between aerosols and clouds to improve our climate models, and examine the efficacy of climate interventions, such as marine cloud brightening. Over the course of this 3-year project, we have developed novel data-driven techniques that advance our ability to assess the effects of ship emissions on marine environments and the risks of future marine cloud brightening efforts. The three main innovative technical contributions we will document here are a method to track aerosol injections using optical flow, a stochastic simulation model for track formations and an automated detection algorithm for efficient identification of ship tracks in large datasets.

More Details

Phenomenology-informed techniques for machine learning with measured and synthetic SAR imagery

Proceedings of SPIE - The International Society for Optical Engineering

Walker, Christopher W.; Larson, Kelsie M.; Erteza, Ireena A.; Bray, Brian K.

Phenomenology-Informed (PI) Machine Learning is introduced to address the unique challenges faced when applying modern machine-learning object recognition techniques to the SAR domain. PI-ML includes a collection of data normalization and augmentation techniques inspired by successful SAR ATR algorithms designed to bridge the gap between simulated and real-world SAR data for use in training Convolutional Neural Networks (CNNs) that perform well in the low-noise, feature-dense space of camera-based imagery. The efficacy of PI-ML will be evaluated using ResNet, EfficientNet, and other networks, using both traditional training techniques and all-SAR transfer learning.

More Details
8 Results
8 Results