EMPIRE User Manual
This is the user manual for EMPIRE, a simulation code for electromagnetics and plasma physics.
This is the user manual for EMPIRE, a simulation code for electromagnetics and plasma physics.
This report documents the progress made in simulating the HERMES-III Magnetically Insulated Transmission Line (MITL) and courtyard with EMPIRE and ITS. This study focuses on the shots that were taken during the months of June and July of 2019 performed with the new MITL extension. There were a few shots where there was dose mapping of the courtyard, 11132, 11133, 11134, 11135, 11136, and 11146. This report focuses on these shots because there was full data return from the MITL electrical diagnostics and the radiation dose sensors in the courtyard. The comparison starts with improving the processing of the incoming voltage into the EMPIRE simulation from the experiment. The currents are then compared at several location along the MITL. The simulation results of the electrons impacting the anode are shown. The electron impact energy and angle is then handed off to ITS which calculates the dose on the faceplate and locations in the courtyard and they are compared to experimental measurements. ITS also calculates the photons and electrons that are injected into the courtyard, these quantities are then used by EMPIRE to calculated the photon and electron transport in the courtyard. The details for the algorithms used to perform the courtyard simulations are presented as well as qualitative comparisons of the electric field, magnetic field, and the conductivity in the courtyard. Because of the computational burden of these calculations the pressure was reduce in the courtyard to reduce the computational load. The computation performance is presented along with suggestion on how to improve both the computational performance as well as the algorithmic performance. Some of the algorithmic changed would reduce the accuracy of the models and detail comparison of these changes are left for a future study. As well as, list of code improvements there is also a list of suggested experimental improvements to improve the quality of the data return.
Physics of Plasmas
An approach to numerically modeling relativistic magnetrons, in which the electrons are represented with a relativistic fluid, is described. A principal effect in the operation of a magnetron is space-charge-limited (SCL) emission of electrons from the cathode. We have developed an approximate SCL emission boundary condition for the fluid electron model. This boundary condition prescribes the flux of electrons as a function of the normal component of the electric field on the boundary. We show the results of a benchmarking activity that applies the fluid SCL boundary condition to the one-dimensional Child–Langmuir diode problem and a canonical two-dimensional diode problem. Simulation results for a two-dimensional A6 magnetron are then presented. Computed bunching of the electron cloud occurs and coincides with significant microwave power generation. Numerical convergence of the solution is considered. Sharp gradients in the solution quantities at the diocotron resonance, spanning an interval of three to four grid cells in the most well-resolved case, are present and likely affect convergence.
Crossed-field diodes (CFDs) are used in multiple high-power applications and are characterized by an applied magnetic field orthogonal to the electric field, induced by the applied voltage across the anode-cathode gap. In vacuum, the Hull cutoff magnetic field (HCMF) represents the maximum applied magnetic field for which an electron from the cathode can reach the anode. This study investigates the effects of non-vacuum conditions on electron trajectories by introducing electron mobility, which represents particle collisions. We used numerical solutions of the electron force law and particle-in-cell simulations (XPDP1) to assess electron motion for various electron mobilities. For magnetic fields above the HCMF in vacuum, reducing the electron mobility increases the time for an electron emitted from the cathode to reach the anode. Reducing mobility below 22 C s/kg eliminates the HCMF for any magnetic field, meaning that an emitted electron will always cross the gap. We derived the magnetic field, mobility, and electron transit time corresponding to this condition by solving for the condition when the electron velocity in the direction across the anode-cathode gap going to zero at the anode. A parametric study of these conditions using theory and XPDP1 is performed under different gap distances, voltages, and magnetic fields.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Simulations of several of the end-irradiated cylindrical photoelectron driven cavity experiments (also known as B-Dot cavities) that were fielded during the July 1 through 2, 2020 shot series at the National Ignition Facility are presented in this report with comparisons to experimental measurements. All cavity B-Dots fielded on the second, third, fourth, fifth and seventh shots were simulated using coupled Integrated Tiger Series (ITS) Monte Carlo transport codes and the Electromagnetic Plasmas in Realistic Environments (EMPIRE) electromagnetic particle-in-cell code.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.