Publications

64 Results
Skip to search filters

Role of Coatings as Artificial Solid Electrolyte Interphases on Lithium Metal Self-Discharge

Journal of Physical Chemistry. C

Merrill, Laura C.; Long, Daniel M.; Small, Kathryn A.; Jungjohann, Katherine L.; Leung, Kevin L.; Bassett, Kimberly L.; Harrison, Katharine L.

Artificial solid electrolyte interphases have provided a path to improved cycle life for high energy density, next-generation anodes like lithium metal. Although long cycle life is necessary for widespread implementation, understanding and mitigating the effects of aging and self-discharge are also required. In this report we investigate several coating materials and their role in calendar life aging of lithium. We find that the oxide coatings are electronically passivating whereas the LiF coating slows charge transfer kinetics. Furthermore, the Coulombic loss during self-discharge measurements improves with the oxide layers and worsens with the LiF layer. It is found that none of the coatings create a continuous conformal, electronically passivating layer on top of the deposited lithium nor are they likely to distribute evenly through a porous deposit, suggesting that none of the materials are acting as an artificial solid electrolyte interphase. Instead, they likely alter performance through modulating lithium nucleation and growth.

More Details

Editorial for focus on nanophase materials for next-generation lithium-ion batteries and beyond

Nanotechnology

Harrison, Katharine L.; Meng, Xiangbo M.; chen, zonghai c.; Li, Jianlin L.; Lu, Wenquan L.; Sun, Xueliang S.

Lithium-ion batteries (LIBs) have revolutionized our society in many respects, and we are expecting even more favorable changes in our lifestyles with newer battery technologies. In pursuing such eligible batteries, nanophase materials play some important roles in LIBs and beyond technologies. Here, stimulated by their beneficial effects of nanophase materials, we initiated this Focus. Excitingly, this Focus collects 13 excellent original research and review articles related to the applications of nanophase materials in various rechargeable batteries, ranging from nanostructured electrode materials, nanoscale interface tailoring, novel separators, computational calculations, and advanced characterizations.

More Details

Are solid-state batteries safer than lithium-ion batteries?

Joule

Bates, Alex M.; Preger, Yuliya P.; Torres-Castro, Loraine T.; Harrison, Katharine L.; Harris, Stephen J.; Hewson, John C.

All-solid-state batteries are often assumed to be safer than conventional Li-ion ones. In this work, we present the first thermodynamic models to quantitatively evaluate solid-state and Li-ion battery heat release under several failure scenarios. The solid-state battery analysis is carried out with an Li7La3Zr2O12 solid electrolyte but can be extended to other configurations using the accompanying spreadsheet. We consider solid-state batteries that include a relatively small amount of liquid electrolyte, which is often added at the cathode to reduce interfacial resistance. While the addition of small amounts of liquid electrolyte increases heat release under specific failure scenarios, it may be small enough that other considerations, such as manufacturability and performance, are more important commercially. We show that short-circuited all-solid-state batteries can reach temperatures significantly higher than conventional Li-ion, which could lead to fire through flammable packaging and/or nearby materials. Our work highlights the need for quantitative safety analyses of solid-state batteries.

More Details

Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries

iScience

Harrison, Katharine L.; Merrill, Laura C.; Long, Daniel M.; Randolph, Steven R.; Goriparti, Subrahmanyam G.; Christian, Joseph C.; Warren, Benjamin A.; Roberts, Scott A.; Harris, Stephen J.; Perry, Daniel L.; Jungjohann, Katherine L.

Li metal anodes are enticing for batteries due to high theoretical charge storage capacity, but commercialization is plagued by dendritic Li growth and short circuits when cycled at high currents. Applied pressure has been suggested to improve morphology, and therefore performance. We hypothesized that increasing pressure would suppress dendritic growth at high currents. To test this hypothesis, here, we extensively use cryogenic scanning electron microscopy to show that varying the applied pressure from 0.01 to 1 MPa has little impact on Li morphology after one deposition. We show that pressure improves Li density and preserves Li inventory after 50 cycles. However, contrary to our hypothesis, pressure exacerbates dendritic growth through the separator, promoting short circuits. Therefore, we suspect Li inventory is better preserved in cells cycled at high pressure only because the shorts carry a larger portion of the current, with less being carried by electrochemical reactions that slowly consume Li inventory.

More Details

Effect of temperature and FEC on silicon anode heat generation measured by isothermal microcalorimetry

Journal of the Electrochemical Society

Arnot, David J.; Allcorn, Eric A.; Harrison, Katharine L.

Isothermal microcalorimetry (IMC) was used to better understand parasitic reactions and heat generation from Si electrodes in the first 10 cycles using Li/Si half cells. Heat generation from cell polarization (ohmic heat), entropy changes (reversible heat), and parasitic reactions (parasitic heat) are separated and quantified. The effect of temperature and fluoroethylene carbonate (FEC) as an electrolyte additive are also explored. Our results show that at the C/10 cycling rate used here, ohmic heat makes the largest contribution to overall heat generation while reversible heat is the smallest. Ohmic heat generation increases with cycle number due to increasing internal resistance, though the effect is smaller for cells with FEC. Interestingly, capacity-normalized parasitic heat generation is largely unaffected by changes in temperature despite differing reaction kinetics. We show that this is caused by a decrease in average parasitic reaction enthalpy as temperature is increased. Further, cells with FEC display higher average parasitic reaction enthalpy than cells without. The average parasitic reaction enthalpies for all the Si electrodes we tested were lower than previously reported values for graphite, indicating that the SEI formed on Si is less stable.

More Details

Degradation-resistant TiO2@Sn anodes for high-capacity lithium-ion batteries

Journal of Materials Science

Goriparti, Subrahmanyam; Harrison, Katharine L.; Jungjohann, Katherine L.

Abstract: As the demand for higher-performance batteries has increased, so has the body of research on theoretical high-capacity anode materials. However, the research has been hindered because the high-capacity anode material properties and interactions are not well understood, largely due to the difficulty of observing cycling in situ. Using electrochemical scanning transmission electron microscopy (ec-STEM), we report the real-time observation and electrochemical analysis of pristine tin (Sn) and titanium dioxide-coated Sn (TiO2@Sn) electrodes during lithiation/delithiation. As expected, we observed a volume expansion of the pristine Sn electrodes during lithiation, but we further observed that the expansion was followed by Sn detachment from the current collector. Remarkably, although the TiO2@Sn electrodes also exhibited similar volume expansion during lithiation, they showed no evidence of Sn detachment. We found that the TiO2 surface layer acted as an electrochemically activated artificial solid-electrolyte interphase that serves to conduct Li ions. As a physical coating, it mechanically prevented Sn detachment following volume changes during cycling, providing significant degradation resistance and 80% Coulombic efficiency for a complete lithiation/delithiation cycle. Interestingly, upon delithiation, TiO2@Sn electrode displayed a self-healing mechanism of small pore formation in the Sn particle followed by agglomeration into several larger pores as delithiation continued. Graphical abstract: [Figure not available: see fulltext.]

More Details

NMR spectroscopy of coin cell batteries with metal casings

Science Advances

Walder, Brennan W.; Conradi, Mark S.; Borchardt, John J.; Merrill, Laura C.; Sorte, Eric G.; Deichmann, Eric J.; Anderson, Travis M.; Alam, Todd M.; Harrison, Katharine L.

Battery cells with metal casings are commonly considered incompatible with nuclear magnetic resonance (NMR) spectroscopy because the oscillating radio-frequency magnetic fields ("rf fields") responsible for excitation and detection of NMR active nuclei do not penetrate metals. Here, we show that rf fields can still efficiently penetrate nonmetallic layers of coin cells with metal casings provided "B1 damming"configurations are avoided. With this understanding, we demonstrate noninvasive high-field in situ 7Li and 19F NMR of coin cells with metal casings using a traditional external NMR coil. This includes the first NMR measurements of an unmodified commercial off-the-shelf rechargeable battery in operando, from which we detect, resolve, and separate 7Li NMR signals from elemental Li, anodic β-LiAl, and cathodic LixMnO2 compounds. Real-time changes of β-LiAl lithium diffusion rates and variable β-LiAl 7Li NMR Knight shifts are observed and tied to electrochemically driven changes of the β-LiAl defect structure.

More Details

Uncovering the Relationship between Aging and Cycling on Lithium Metal Battery Self-Discharge

ACS Applied Energy Materials

Merrill, Laura C.; Rosenberg, Samantha G.; Jungjohann, Katherine L.; Harrison, Katharine L.

Lithium metal is considered the “holy grail” material to replace typical Li-ion anodes due to the absence of a host structure coupled with a high theoretical capacity. The absence of a host structure results in large volumetric changes when lithium is electrodeposited/dissolved, making the lithium prone to stranding and parasitic reactions with the electrolyte. Lithium research is focused on enabling highly reversible lithium electrodeposition/dissolution, which is important to achieving long cycle life. Understanding the various mechanisms of self-discharge is also critical for realizing practical lithium metal batteries but is often overlooked. In contrast to previous work, it is shown here that self-discharge via galvanic corrosion is negligible, particularly when lithium is cycled to relevant capacities. Rather, the continued electrochemical cycling of lithium metal results in self-discharge when periodic rest is applied during cycling. The extent of self-discharge can be controlled by increasing the capacity of plated lithium, tuning electrolyte chemistry, incorporating regular rest, or introducing lithiophilic materials. Finally, the Coulombic losses that occur during periodic rest are largely reversible, suggesting that the dominant self-discharge mechanism in this work is not an irreversible chemical process but rather a morphological process.

More Details

Silicon Consortium Project: No-Go on Moir Interferometry for Measuring SEI Strain as a Probe for Calendar Life Testing

McBrayer, Josefine D.; Serkland, Darwin K.; Fenton, Kyle R.; Apblett, Christopher A.; Minteer, Shelley D.; Harrison, Katharine L.

Silicon is a promising candidate as a next generation anode to replace or complement graphite electrodes due to its high energy density and low lithiation potential. When silicon is lithiated, it experiences over 300% expansion which stresses the silicon as well as its solid electrolyte interphase (SEI) leading to poor performance. The use of nano-sized silicon has helped to mitigate volume expansion and stress in the silicon, yet the silicon SEI is still both mechanically and chemically unstable. Identifying the mechanical failure mechanism of the SEI will help enhance calendar and cycle life performance through improved SEI design. In situ moiré interferometry was investigated to try and track the in-plane strain in the SEI and silicon electrode for this purpose. Moiré can detect on the order of 10 nm changes in displacement and is therefore a useful tool in the measurement of strain. As the sample undergoes small deformations, large changes in the moiré fringe allow for measurements of displacement below the diffraction limit of light. Figure 1a shows how the moiré fringe changes as the sample grating deforms. As the sample contracts or expands, the frequency of the moiré fringe changes, and this change is proportional to the strain in the sample.

More Details

Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME

ACS Applied Materials and Interfaces

Harrison, Katharine L.; Goriparti, Subbu G.; Merrill, Laura C.; Long, Daniel M.; Warren, Benjamin A.; Perdue, Brian R.; Casias, Zachary C.; Cuillier, Paul C.; Boyce, Brad B.; Jungjohann, Katherine L.

Lithium-metal anodes can theoretically enable 10x higher gravimetric capacity than conventional graphite anodes. However, Li-metal anode cycling has proven difficult due to porous and dendritic morphologies, extensive parasitic solid electrolyte interphase reactions, and formation of dead Li. We systematically investigate the effects of applied interfacial pressure on Li-metal anode cycling performance and morphology in the recently developed and highly efficient 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane electrolyte. We present cycling, morphology, and impedance data at a current density of 0.5 mA/cm2 and a capacity of 2 mAh/cm2 at applied interfacial pressures of 0, 0.01, 0.1, 1, and 10 MPa. Cryo-focused ion beam milling and cryo-scanning electron microscopy imaging in cross section reveal that increasing the applied pressure during Li deposition from 0 to 10 MPa leads to greater than a fivefold reduction in thickness (and therefore volume) of the deposited Li. This suggests that pressure during cycling can have a profound impact on the practical volumetric energy density for Li-metal anodes. A “goldilocks zone” of cell performance is observed at intermediate pressures of 0.1–1 MPa. Increasing pressure from 0 to 1 MPa generally improves cell-to-cell reproducibility, cycling stability, and Coulombic efficiency. However, the highest pressure (10 MPa) results in high cell overpotential and evidence of soft short circuits, which likely result from transport limitations associated with increased pressure causing local pore closure in the separator. All cells exhibit at least some signs of cycling instability after 50 cycles when cycled to 2 mAh/cm2 with thin 50 μm Li counter electrodes, though instability decreases with increasing pressure. In contrast, cells cycled to only 1 mAh/cm2 perform well for 50 cycles, indicating that capacity plays an important role in cycling stability.

More Details

Cryogenic Laser Ablation Reveals Short-Circuit Mechanism in Lithium Metal Batteries

ACS Energy Letters

Jungjohann, Katherine L.; Gannon, Renae N.; Goriparti, Subrahmanyam; Randolph, Steven J.; Merrill, Laura C.; Johnson, David C.; Zavadil, Kevin R.; Harris, Stephen J.; Harrison, Katharine L.

The dramatic 50% improvement in energy density that Li-metal anodes offer in comparison to graphite anodes in conventional lithium (Li)-ion batteries cannot be realized with current cell designs because of cell failure after a few cycles. Often, failure is caused by Li dendrites that grow through the separator, leading to short circuits. Here, we used a new characterization technique, cryogenic femtosecond laser cross sectioning and subsequent scanning electron microscopy, to observe the electroplated Li-metal morphology and the accompanying solid electrolyte interphase (SEI) into and through the intact coin cell battery's separator, gradually opening pathways for soft-short circuits that cause failure. We found that separator penetration by the SEI guided the growth of Li dendrites through the cell. A short-circuit mechanism via SEI growth at high current density within the separator is provided. These results will inform future efforts for separator and electrolyte design for Li-metal anodes.

More Details

Use of a Be-dome holder for texture and strain characterization of Li metal thin films via sin(ψ) methodology

Powder Diffraction

Rodriguez, Mark A.; Harrison, Katharine L.; Goriparti, Subrahmanyam G.; Griego, James J.M.; Boyce, Brad B.; Perdue, Brian R.

Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (-0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.

More Details

Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries

Cell Reports Physical Science

Harrison, Katharine L.; Zhang, Xin Z.; Wang, Q.J.; Roberts, Scott A.; Jungjohann, Katherine L.; Harris, Stephen J.

The development of solid-state batteries has encountered a number of problems due to the complex interfacial contact conditions between lithium (Li) metal and solid electrolytes (SEs). Recent experiments have shown that applying stack pressure can ameliorate these problems. Here, we report a multi-scale three-dimensional time-dependent contact model for describing the Li-SE interface evolution under stack pressure. Our simulation considers the surface roughness of the Li and SEs, Li elastoplasticity, Li creep, and the Li metal plating/stripping process. Consistency between the very recent experiments from two different research groups indicates effective yield strength of the Li used in those experiments of 16 ± 2 MPa. We suggest that the preferred stack pressure be at least 20 MPa to maintain a relatively small interface resistance while reducing void volume.

More Details

Tuning the Selectivity and Activity of Electrochemical Interfaces with Defective Graphene Oxide and Reduced Graphene Oxide

ACS Applied Materials and Interfaces

Genorio, Bostjan; Harrison, Katharine L.; Connell, Justin G.; Dražić, Goran; Zavadil, Kevin R.; Markovic, Nenad M.; Strmcnik, Dusan

Engineered solid-liquid interfaces will play an important role in the development of future energy storage and conversion (ESC) devices. In the present study, defective graphene oxide (GO) and reduced graphene oxide (rGO) structures were used as engineered interfaces to tune the selectivity and activity of Pt disk electrodes. GO was deposited on Pt electrodes via the Langmuir-Blodgett technique, which provided compact and uniform GO films, and these films were subsequently converted to rGO by thermal reduction. Electrochemical measurements revealed that both GO and rGO interfaces on Pt electrodes exhibit selectivity toward the oxygen reduction reaction (ORR), but they do not have an impact on the activity of the hydrogen oxidation reaction in acidic environments. Scanning transmission electron microscopy at atomic resolution, along with Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), revealed possible diffusion sites for H2 and O2 gas molecules and functional groups relevant to the selectivity and activity of these surfaces. Based on these insights, rGO interfaces are further demonstrated to exhibit enhanced activity for the ORR in nonaqueous environments and demonstrate the power of our ex situ engineering approach for the development of next-generation ESC devices.

More Details

Na intercalation in Fe-MIL-100 for aqueous Na-ion batteries

RSC Advances

Chavez, James S.; Harrison, Katharine L.; Sava Gallis, Dorina F.

Here we report for the first time the feasibility of using metal-organic frameworks (MOFs) as electrodes for aqueous Na-ion batteries. We show that Fe-MIL-100, a known redox-active MOF, is electrochemically active in a Na aqueous electrolyte, under various compositions. Emphasis was placed on investigating the electrode-electrolyte interface, with a focus on identifying the relationship between additives in the composition of the working electrode, particle size and overall performance. We found that the energy storage capacity is primarily dependent on the binder additive in the composite; the best activity for this MOF is obtained with Nafion as a binder, owing to its hydrophilic and ion conducting nature. Kynar-bound electrodes are clearly less effective, due to their hydrophobic character, which impedes wetting of the electrode. The binder-free systems show the poorest electrochemical activity. There is little difference in the overall performance as function of particle size (micro vs. nano), implying the storage capacities in this study are not limited by ionic and/or electronic conductivity. Excellent reversibility and high coulombic efficiency are achieved at higher potential ranges, observed after cycle 20. That is despite progressive capacity decay observed in the initial cycles. Importantly, structural analyses of cycled working electrodes confirm that the long range crystallinity remains mainly unaltered with cycling. These findings suggest that limited reversibility of the intercalated Na ions in the lower potential range, together with the gradual lack of available active sites in subsequent cycles is responsible for the rapid decay in capacity retention.

More Details

Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

Black, Hayden T.; Harrison, Katharine L.

The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

More Details

Mechanical Properties of Water-Assembled Graphene Oxide Langmuir Monolayers: Guiding Controlled Transfer

Langmuir

Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir-Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10-25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. We hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

More Details
64 Results
64 Results