Potential of Solid-State Transformers to Improve Grid Resilience
Abstract not provided.
Abstract not provided.
IEEE Power and Energy Society General Meeting
A methodology for the design of control systems for wide-area power systems using solid-state transformers (SSTs) as actuators is presented. Due to their ability to isolate the primary side from the secondary side, an SST can limit the propagation of disturbances, such as frequency and voltage deviations, from one side to the other. This paper studies a control strategy based on SSTs deployed in the transmission grid to improve the resilience of power grids to disturbances. The control design is based on an empirical model of an SST that is appropriate for control design in grid level applications. A simulation example illustrating the improvement provided by an SST in a large-scale power system via a reduction in load shedding due to severe disturbances are presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
2017 12th System of Systems Engineering Conference, SoSE 2017
As system of systems (SoS) models become increasingly complex and interconnected a new approach is needed to capture the effects of humans within the SoS. Many real-life events have shown the detrimental outcomes of failing to account for humans in the loop. This research introduces a novel and cross-disciplinary methodology for modeling humans interacting with technologies to perform tasks within an SoS specifically within a layered physical security system use case. Metrics and formulations developed for this new way of looking at SoS termed sociotechnical SoS allow for the quantification of the interplay of effectiveness and efficiency seen in detection theory to measure the ability of a physical security system to detect and respond to threats. This methodology has been applied to a notional representation of a small military Forward Operating Base (FOB) as a proof-of-concept.
Abstract not provided.
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference
This paper examines the accuracy of clustering techniques for predicting hosting capacity. Hosting capacity results for 214 study feeders were used to predict a range of hosting capacities for an addition 7929 feeders using clustering techniques. Several methods were explored to try to improve the accuracy for predicting hosting capacity, including increasing the number of clusters, selecting variables that are highly correlated to hosting capacity for clustering, and weighting highly correlated clustering variables. The average normalized interquartile range (ANIQR) is used to compare the accuracy of several clustering methods for predicting hosting capacity.
Abstract not provided.
Abstract not provided.
Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.
Abstract not provided.
The third solicitation of the California Solar Initiative (CSI) Research, Development, Demonstration and Deployment (RD&D) Program established by the California Public Utility Commission (CPUC) is supporting the Electric Power Research Institute (EPRI), National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) with collaboration from Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E), in research to improve the Utility Application Review and Approval process for interconnecting distributed energy resources to the distribution system. Currently this process is the most time - consuming of any step on the path to generating power on the distribution system. This CSI RD&D solicitation three project has completed the tasks of collecting data from the three utilities, clustering feeder characteristic data to attain representative feeders, detailed modeling of 16 representative feeders, analysis of PV impacts to those feeders, refinement of current screening processes, and validation of those suggested refinements. In this report each task is summarized to produce a final summary of all components of the overall project.
Many critical loads rely on simple backup generation to provide electricity in the event of a power outage. An Energy Surety Microgrid TM can protect against outages caused by single generator failures to improve reliability. An ESM will also provide a host of other benefits, including integration of renewable energy, fuel optimization, and maximizing the value of energy storage. The ESM concept includes a categorization for microgrid value proposi- tions, and quantifies how the investment can be justified during either grid-connected or utility outage conditions. In contrast with many approaches, the ESM approach explic- itly sets requirements based on unlikely extreme conditions, including the need to protect against determined cyber adversaries. During the United States (US) Department of Defense (DOD)/Department of Energy (DOE) Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) effort, the ESM methodology was successfully used to develop the preliminary designs, which direct supported the contracting, construction, and testing for three military bases. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military installations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Melanie Johnson and Harold Sanborn of the U.S. Army Corps of Engineers Construc- tion Engineering Research Laboratory * Experts from the National Renewable Energy Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory
This project is part of the third solicitation of the California Solar Initiative (CSI3) Research, Development, Demonstration, and Deployment Program created by the California Public Utilities Commission (CPUC) in 2006 to support solar research in California. The program focuses on research to improve the utility application review and approval process for interconnecting distributed energy resources such as solar to the distribution system. The CSI3 program is supporting EPRI, National Renewable Energy Laboratory (NREL), and Sandia National Laboratories (SNL) in their collaboration on the process with Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). At present, the application review and approval process is the most time-consuming of any step on the path to generating power for delivery through the distribution system.
Abstract not provided.
In 2012, Hurricane Sandy devastated much of the U.S. northeast coastal areas. Among those hardest hit was the small community of Hoboken, New Jersey, located on the banks of the Hudson River across from Manhattan. This report describes a city-wide electrical infrastructure design that uses microgrids and other infrastructure to ensure the city retains functionality should such an event occur in the future. The designs ensure that up to 55 critical buildings will retain power during blackout or flooded conditions and include analysis for microgrid architectures, performance parameters, system control, renewable energy integration, and financial opportunities (while grid connected). The results presented here are not binding and are subject to change based on input from the Hoboken stakeholders, the integrator selected to manage and implement the microgrid, or other subject matter experts during the detailed (final) phase of the design effort.
The screening process for DG interconnection procedures needs to be improved in order to increase the PV deployment level on the distribution grid. A significant improvement in the current screening process could be achieved by finding a method to classify the feeders in a utility service territory and determine the sensitivity of particular groups of distribution feeders to the impacts of high PV deployment levels. This report describes the utility distribution feeder characteristics in California for a large dataset of 8,163 feeders and summarizes the California feeder population including the range of characteristics identified and most important to hosting capacity. The report describes the set of feeders that are identified for modeling and analysis as well as feeders identified for the control group. The report presents a method for separating a utility<U+2019>s distribution feeders into unique clusters using the k-means clustering algorithm. An approach for determining the feeder variables of interest for use in a clustering algorithm is also described. The report presents an approach for choosing the feeder variables to be utilized in the clustering process and a method is identified for determining the optimal number of representative clusters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.
Abstract not provided.
Abstract not provided.
Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.