A Task Analysis of Static Binary Reverse Engineering for Security
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Vulnerability analysts protecting software lack adequate tools for understanding data flow in binaries. We present a case study in which we used human factors methods to develop a taxonomy for understanding data flow and the visual representations needed to support decision making for binary vulnerability analysis. Using an iterative process, we refined and evaluated the taxonomy by generating three different data flow visualizations for small binaries, trained an analyst to use these visualizations, and tested the utility of the visualizations for answering data flow questions. Throughout the process and with minimal training, analysts were able to use the visualizations to understand data flow related to security assessment. Our results indicate that the data flow taxonomy is promising as a mechanism for improving analyst understanding of data flow in binaries and for supporting efficient decision making during analysis.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
Even as remote sensing technology has advanced in leaps and bounds over the past decadeāthe remote sensing community lacks interfaces and interaction models that facilitate effective human operation of our sensor platforms. Interfaces that make great sense to electrical engineers and flight test crews can be anxiety-inducing to operational users who lack professional experience in the design and testing of sophisticated remote sensing platforms. In this paper, we reflect on an 18-month collaboration which our Sandia National Laboratory research team partnered with an industry software team to identify and fix critical issues in a widely-used sensor interface. Drawing on basic principles from cognitive and perceptual psychology and interaction design, we provide simple, easily learned guidance for minimizing common barriers to system learnability, memorability, and user engagement.
Cyber defense is an asymmetric battle today. We need to understand better what options are available for providing defenders with possible advantages. Our project combines machine learning, optimization, and game theory to obscure our defensive posture from the information the adversaries are able to observe. The main conceptual contribution of this research is to separate the problem of prediction, for which machine learning is used, and the problem of computing optimal operational decisions based on such predictions, coup led with a model of adversarial response. This research includes modeling of the attacker and defender, formulation of useful optimization models for studying adversarial interactions, and user studies to meas ure the impact of the modeling approaches in re alistic settings.
Abstract not provided.
Eye Tracking Research and Applications Symposium (ETRA)
From the seminal work of Yarbus [1967] on the relationship of eye movements to vision, scanpath analysis has been recognized as a window into the mind. Computationally, characterizing the scanpath, the sequential and spatial dependencies between eye positions, has been demanding. We sought a method that could extract scanpath trajectory information from raw eye movement data without assumptions defining fixations and regions of interest. We adapted a set of libraries that perform multidimensional clustering on geometric features derived from large volumes of spatiotemporal data to eye movement data in an approach we call GazeAppraise. To validate the capabilities of GazeAppraise for scanpath analysis, we collected eye tracking data from 41 participants while they completed four smooth pursuit tracking tasks. Unsupervised cluster analysis on the features revealed that 162 of 164 recorded scanpaths were categorized into one of four clusters and the remaining two scanpaths were not categorized (recall/sensitivity=98.8%). All of the categorized scanpaths were grouped only with other scanpaths elicited by the same task (precision=100%). GazeAppraise offers a unique approach to the categorization of scanpaths that may be particularly useful in dynamic environments and in visual search tasks requiring systematic search strategies.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Inferring the cognitive state of an individual in real time during task performance allows for implementation of corrective measures prior to the occurrence of an error. Current technology allows for real time cognitive state assessment based on objective physiological data though techniques such as neuroimaging and eye tracking. Although early results indicate effective construction of classifiers that distinguish between cognitive states in real time is a possibility in some settings, implementation of these classifiers into real world settings poses a number of challenges. Cognitive states of interest must be sufficiently distinct to allow for continuous discrimination in the operational environment using technology that is currently available as well as practical to implement.
Abstract not provided.