Publications

3 Results
Skip to search filters

MEMS reliability in shock environments

Walraven, J.A.; Helgesen, Karen S.; Irwin, Lloyd W.; Brown, Frederick A.; Smith, Norman F.

In order to determine the susceptibility of the MEMS (MicroElectroMechanical Systems) devices to shock, tests were performed using haversine shock pulses with widths of 1 to 0.2 ms in the range from 500g to 40,000g. The authors chose a surface-micromachined microengine because it has all the components needed for evaluation: springs that flex, gears that are anchored, and clamps and spring stops to maintain alignment. The microengines, which were unpowered for the tests, performed quite well at most shock levels with a majority functioning after the impact. Debris from the die edges moved at levels greater than 4,000g causing shorts in the actuators and posing reliability concerns. The coupling agent used to prevent stiction in the MEMS release weakened the die-attach bond, which produced failures at 10,000g and above. At 20,000g the authors began to observe structural damage in some of the thin flexures and 2.5-micron diameter pin joints. The authors observed electrical failures caused by the movement of debris. Additionally, they observed a new failure mode where stationary comb fingers contact the ground plane resulting in electrical shorts. These new failure were observed in the control group indicating that they were not shock related.

More Details

MEMS reliability in a vibration environment

Walraven, J.A.; Helgesen, Karen S.; Irwin, Lloyd W.; Gregory, Danny L.; Stake, John R.; Smith, Norman F.

MicroElectricalMechanical Systems (MEMS) were subjected to a vibration environment that had a peak acceleration of 120g and spanned frequencies from 20 to 2000 Hz. The device chosen for this test was a surface-micromachined microengine because it possesses many elements (springs, gears, rubbing surfaces) that may be susceptible to vibration. The microengines were unpowered during the test. The authors observed 2 vibration-related failures and 3 electrical failures out of 22 microengines tested. Surprisingly, the electrical failures also arose in four microengines in the control group indicating that they were not vibration related. Failure analysis revealed that the electrical failures were due to shorting of stationary comb fingers to the ground plane.

More Details

MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

Walraven, J.A.; Smith, Norman F.; Irwin, Lloyd W.; Helgesen, Karen S.; Clement, John J.; Miller, Samuel L.; Dugger, Michael T.

The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

More Details
3 Results
3 Results