Thermal aging of the polyurethane foam for the H1259 storage container
Abstract not provided.
Abstract not provided.
Abstract not provided.
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes as adaptive or smart materials. Dimensional adjustments of adaptive polymer films depend on controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric material features, expected to suffer due to space environmental degradation. Hence, the degradation and performance of PVDF and its copolymers under various stress environments expected in low Earth orbit has been reviewed and investigated. Various experiments were conducted to expose these polymers to elevated temperature, vacuum UV, {gamma}-radiation and atomic oxygen. The resulting degradative processes were evaluated. The overall materials performance is governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The effects of combined vacuum UV radiation and atomic oxygen resulted in expected surface erosion and pitting rates that determine the lifetime of thin films. Interestingly, the piezo responsiveness in the underlying bulk material remained largely unchanged. This study has delivered a comprehensive framework for material properties and degradation sensitivities with variations in individual polymer performances clearly apparent. The results provide guidance for material selection, qualification, optimization strategies, feedback for manufacturing and processing, or alternative materials. Further material qualification should be conducted via experiments under actual space conditions.
Abstract not provided.
Abstract not provided.
Three methods that were used to measure the chemical changes associated with oxidative degradation of polymeric materials are presented. The first method is based on the nuclear activation of {sup 18}O in an elastomer that was thermally aged in an {sup 18}O{sub 2} atmosphere. Second, the alcohol groups in a thermally aged elastomer were derivatized with trifluoroacetic anhydride and their concentration measured via {sup 19}F NMR spectroscopy. Finally, a respirometer was used to directly measure the oxidative rates of a polyurethane foam as a function of aging temperature. The measurement of the oxidation rates enabled acceleration factors for oxidative degradation of these materials to be calculated.
Abstract not provided.
Proposed for publication in Macromolecules.
An aged polybutadiene-based elastomer was reacted with trifluoroacetic anhydride (TFAA) and subsequently analyzed via 19F NMR spectroscopy. Derivatization between the TFAA and hydroxyl functionalities produced during thermo-oxidative aging was achieved, resulting in the formation of trifluoroester groups on the polymer. Primary and secondary alcohols were confirmed to be the main oxidation products of this material, and the total percent oxidation correlated with data obtained from oxidation rate measurements. The chemical derivatization appears to be highly sensitive and can be used to establish the presence and identity of oxidation products in aged polymeric materials. This methodology represents a novel condition monitoring approach for the detection of chemical changes that are otherwise difficult to analyze.