Publications

2 Results
Skip to search filters

Targeting proteins to liquid-ordered domains in lipid membranes

Langmuir

Stachowiak, Jeanne C.; Hayden, Carl C.; Sanchez, Mari A.; Wang, Julia W.; Bunker, B.C.; Voigt, James A.; Sasaki, Darryl Y.

We demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (Lo) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system. Fluorescence correlation spectroscopy confirmed the fluidity of the Lo phase containing DPIDA. In the presence of CuCl2, the iminodiacetic acid (IDA) headgroup of DPIDA forms the Cu(II)-IDA complex that exhibits a high affinity for histidine residues. His-tagged proteins were bound specifically to domains enriched in DPIDA, demonstrating the capacity to target protein binding selectively to both solid and Lo phases. Steric pressure from the crowding of surface-bound proteins transformed the domains into tubules with persistence lengths that depended on the phase state of the lipid domains. © 2010 American Chemical Society.

More Details

Biomolecular transport and separation in nanotubular networks

Sasaki, Darryl Y.; Wang, Julia W.; Hayden, Carl C.; Stachowiak, Jeanne C.; Branda, Steven B.; Bachand, George B.; Meagher, Robert M.; Stevens, Mark J.; Robinson, David R.; Zendejas, Frank Z.

Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.

More Details
2 Results
2 Results