Publications

7 Results
Skip to search filters

Host suppression and bioinformatics for sequence-based characterization of unknown pathogens

Misra, Milind; Patel, Kamlesh P.; Kaiser, Julia N.; Meagher, Robert M.; Branda, Steven B.; Schoeniger, Joseph S.

Bioweapons and emerging infectious diseases pose formidable and growing threats to our national security. Rapid advances in biotechnology and the increasing efficiency of global transportation networks virtually guarantee that the United States will face potentially devastating infectious disease outbreaks caused by novel ('unknown') pathogens either intentionally or accidentally introduced into the population. Unfortunately, our nation's biodefense and public health infrastructure is primarily designed to handle previously characterized ('known') pathogens. While modern DNA assays can identify known pathogens quickly, identifying unknown pathogens currently depends upon slow, classical microbiological methods of isolation and culture that can take weeks to produce actionable information. In many scenarios that delay would be costly, in terms of casualties and economic damage; indeed, it can mean the difference between a manageable public health incident and a full-blown epidemic. To close this gap in our nation's biodefense capability, we will develop, validate, and optimize a system to extract nucleic acids from unknown pathogens present in clinical samples drawn from infected patients. This system will extract nucleic acids from a clinical sample, amplify pathogen and specific host response nucleic acid sequences. These sequences will then be suitable for ultra-high-throughput sequencing (UHTS) carried out by a third party. The data generated from UHTS will then be processed through a new data assimilation and Bioinformatic analysis pipeline that will allow us to characterize an unknown pathogen in hours to days instead of weeks to months. Our methods will require no a priori knowledge of the pathogen, and no isolation or culturing; therefore it will circumvent many of the major roadblocks confronting a clinical microbiologist or virologist when presented with an unknown or engineered pathogen.

More Details

Accurate measurement of cellular autofluorescence is critical for imaging of host-pathogen interactions

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Timlin, Jerilyn A.; Noek, Rachel M.; Kaiser, Julia N.; Sinclair, Michael B.; Jones, Howland D.; Davis, Ryan W.; Lane, Todd L.

Cellular autofluorescence, though ubiquitous when imaging cells and tissues, is often assumed to be small in comparison to the signal of interest. Uniform estimates of autofluorescence intensity obtained from separate control specimens are commonly employed to correct for autofluorescence. While these may be sufficient for high signal-to-background applications, improvements in detector and probe technologies and introduction of spectral imaging microscopes have increased the sensitivity of fluorescence imaging methods, exposing the possibility of effectively probing the low signal-to-background regime. With spectral imaging, reliable monitoring of signals near or even below the noise levels of the microscope is possible if autofluorescence and background signals can be accurately compensated for. We demonstrate the importance of accurate autofluorescence determination and utility of spectral imaging and multivariate analysis methods using a case study focusing on fluorescence confocal spectral imaging of host-pathogen interactions. In this application fluorescent proteins are produced when bacteria invade host cells. Unfortunately the analyte signal is spectrally overlapped and typically weaker than the cellular autofluorescence. In addition to discussing the advantages of spectral imaging for following pathogen invasion, we present the spectral properties of mouse macrophage autofluorescence. The imaging and analysis methods developed are widely applicable to cell and tissue imaging. © 2008 Copyright SPIE - The International Society for Optical Engineering.

More Details

Microfluidic-based cell sorting of Francisella tularensis infected macrophages using optical forces

Analytical Chemistry

Perroud, Thomas D.; Kaiser, Julia N.; Sy, Jay C.; Lane, Todd L.; Branda, Catherine B.; Singh, Anup K.; Patel, Kamlesh P.

We have extended the principle of optical tweezers as a noninvasive technique to actively sort hydrodynamically focused cells based on their fluorescence signal in a microfluidic device. This micro fluorescence-activated cell sorter (μFACS) uses an infrared laser to laterally deflect cells into a collection channel. Green-labeled macrophages were sorted from a 40/60 ratio mixture at a through-put of 22 cells/s over 30 min achieving a 93% sorting purity and a 60% recovery yield. To rule out potential photoinduced cell damage during optical deflection, we investigated the response of mouse macrophage to brief exposures (<4 ms) of focused 1064-nm laser light (9.6 W at the sample). We found no significant difference in viability, cell proliferation, activation state, and functionality between infrared-exposed and unexposed cells. Activation state was measured by the phosphorylation of ERK and nuclear translocation of NF-κB, while functionality was assessed in a similar manner, but after a lipopolysaccharide challenge. To demonstrate the selective nature of optical sorting, we isolated a subpopulation of macrophages highly infected with the fluorescently labeled pathogen Francisella tularensis subsp. novicida. A total of 10 738 infected cells were sorted at a throughput of 11 cells/s with 93% purity and 39% recovery. © 2008 American Chemical Society.

More Details
7 Results
7 Results