Publications

5 Results
Skip to search filters

Development of the Resin Infusion between Double Flexible Tooling process : assessment of the viability of in-mold coating and implementation of UV curing

Ruffner, Judith A.

As composites gain wider acceptance in all sectors of the economy, new methodologies must be developed to increase their cost effectiveness in manufacturing. The neoteric Resin Infusion between Double Flexible Tooling (RIDFT) process is undergoing modifications to improve its cost-effectiveness by developing methodologies for in-mold coating and the incorporation of UV curing. In-mold coating is desired by the composites industry since it eliminates the current paint process, which is not only laborious and time consuming, but expensive, and presents safety issues. Two methodologies (paint films and coinfusion) for implementing in-mold coating were investigated. It was demonstrated that thermoformable paint films could be used to produce coated RIDFTed components. Coinfusion was also successfully implemented. This work also investigated the feasibility of designing and incorporating a Cure on Demand system into the RIDFT process, using ultraviolet (UV) light for the curing of composite laminates. The objective was to develop a process for the RIDFT that would eliminate or reduce the inflexibility in the current production process, resulting in shortened production cycle times. UV-cured laminates were produced at a fraction of the time required to produce catalyst-cured laminates. Mechanical and material characterization tests were performed on each of the UV-cured laminates produced. The results were referenced against those obtained for laminates produced using a catalyst curing system to determine their overall quality. The UV-cured laminates, after undergoing tensile and rheological thermal tests, were found to have mechanical and material properties comparable, or in a few instances slightly better, than that of thermally cured laminates.

More Details

Hydrogen peroxide-based propulsion and power systems

Keese, David L.; Melof, Brian M.; Ingram, Brian I.; Escapule, William R.; Grubelich, Mark C.; Ruffner, Judith A.

Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

More Details

Biomanufacturing : a state of the technology review

Ruffner, Judith A.; Ruffner, Judith A.; Emerson, John A.; Myers, Ramona L.

Biomanufacturing has the potential to be one of the defining technologies in the upcoming century. Research, development, and applications in the fields of biotechnology, bioengineering, biodetection, biomaterials, biocomputation and bioenergy will have dramatic impact on both the products we are able to create, and the ways in which we create them. In this report, we examine current research trends in biotechnology, identify key areas where biomanufacturing will likely be a major contributing field, and report on recent developments and barriers to progress in key areas.

More Details

Thin Film Models of Magnesium Orthovanadate Catalysts for Oxidative Dehydrogenation

Sault, Allen G.; Mudd, Jason E.; Ruffner, Judith A.; Rodriguez, Marko A.; Tissot, Ralph G.

Magnesium vanadates are potentially important catalytic materials for the conversion of alkanes to alkenes via oxidative dehydrogenation. However, little is known about the active sites at which the catalytic reactions take place. It may be possible to obtain a significant increase in the catalytic efficiency if the effects of certain material properties on the surface reactions could be quantified and optimized through the use of appropriate preparation techniques. Given that surface reactivity is often dependent upon surface structure and that the atomic level structure of the active sites in these catalysts is virtually unknown, we desire thin film samples consisting of a single magnesium vanadate phase and a well defined crystallographic orientation in order to reduce complexity and simplify the study of active sites. This report describes the use of reactive RF sputter deposition to fabricate very highly oriented, stoichiometric Mg{sub 3}(VO{sub 4}){sub 2} thin films, and subsequent studies of the reactivity of these films under reaction conditions typically found during oxidative dehydrogenation. We demonstrate that the synthesis methods employed do in fact result in stoichiometric films with the desired crystallographic orientation, and that the chemical behavior of the films closely approximates that of bulk, high surface area Mg{sub 3}(VO{sub 4}){sub 2} powders. We further use these films to demonstrate the effects of oxygen vacancies on chemical behavior, demonstrate that surface composition can vary significantly under reaction conditions, and obtain the first evidence for structure sensitivity in Mg{sub 3}(VO{sub 4}){sub 2} catalysts.

More Details
5 Results
5 Results