Publications

47 Results
Skip to search filters

Melting and density of MgSiO3 determined by shock compression of bridgmanite to 1254GPa

Nature Communications

Fei, Yingwei; Seagle, Christopher T.; Townsend, Joshua P.; McCoy, C.A.; Boujibar, Asmaa; Driscoll, Peter; Shulenburger, Luke N.; Furnish, Michael D.

The essential data for interior and thermal evolution models of the Earth and super-Earths are the density and melting of mantle silicate under extreme conditions. Here, we report an unprecedently high melting temperature of MgSiO3 at 500 GPa by direct shockwave loading of pre-synthesized dense MgSiO3 (bridgmanite) using the Z Pulsed Power Facility. We also present the first high-precision density data of crystalline MgSiO3 to 422 GPa and 7200 K and of silicate melt to 1254 GPa. The experimental density measurements support our density functional theory based molecular dynamics calculations, providing benchmarks for theoretical calculations under extreme conditions. The excellent agreement between experiment and theory provides a reliable reference density profile for super-Earth mantles. Furthermore, the observed upper bound of melting temperature, 9430 K at 500 GPa, provides a critical constraint on the accretion energy required to melt the mantle and the prospect of driving a dynamo in massive rocky planets.

More Details

The shock physics of giant impacts: Key requirements for the equations of state

AIP Conference Proceedings

Stewart, Sarah; Davies, Erik; Duncan, Megan; Lock, Simon; Root, Seth R.; Townsend, Joshua P.; Kraus, Richard; Caracas, Razvan; Jacobsen, Stein

We discuss major challenges in modeling giant impacts between planetary bodies, focusing on the equations of state (EOS). During the giant impact stage of planet formation, rocky planets are melted and partially vaporized. However, most EOS models fail to reproduce experimental constraints on the thermodynamic properties of the major minerals over the required phase space. Here, we present an updated version of the widely-used ANEOS model that includes a user-defined heat capacity limit in the thermal free energy term. Our revised model for forsterite (Mg2SiO4), a common proxy for the mantles of rocky planets, provides a better fit to material data over most of the phase space of giant impacts. We discuss the limitations of this model and the Tillotson equation of state, a commonly used alternative model.

More Details

Starting-point-independent quantum Monte Carlo calculations of iron oxide

Physical Review B

Townsend, Joshua P.; Pineda Flores, Sergio D.; Clay III, Raymond C.; Mattsson, Thomas M.; Neuscamman, Eric; Zhao, Luning; Cohen, R.E.; Shulenburger, Luke N.

Quantum Monte Carlo (QMC) methods are useful for studies of strongly correlated materials because they are many body in nature and use the physical Hamiltonian. Typical calculations assume as a starting point a wave function constructed from single-particle orbitals obtained from one-body methods, e.g., density functional theory. However, mean-field-derived wave functions can sometimes lead to systematic QMC biases if the mean-field result poorly describes the true ground state. Here, we study the accuracy and flexibility of QMC trial wave functions using variational and fixed-node diffusion QMC estimates of the total spin density and lattice distortion of antiferromagnetic iron oxide (FeO) in the ground state B1 crystal structure. We found that for relatively simple wave functions the predicted lattice distortion was controlled by the choice of single-particle orbitals used to construct the wave function, rather than by subsequent wave function optimization techniques within QMC. By optimizing the orbitals with QMC, we then demonstrate starting-point independence of the trial wave function with respect to the method by which the orbitals were constructed by demonstrating convergence of the energy, spin density, and predicted lattice distortion for two qualitatively different sets of orbitals. The results suggest that orbital optimization is a promising method for accurate many-body calculations of strongly correlated condensed phases.

More Details

Liquid-Vapor Coexistence and Critical Point of Mg2SiO4 From Ab Initio Simulations

Geophysical Research Letters

Townsend, Joshua P.; Shohet, Gil; Cochrane, Kyle C.

Hypervelocity impact-driven vaporization is characteristic of late-stage planet formation. Yet the behavior and properties of liquid-vapor mixtures of planetary materials of interest are typically unknown. Multiphase equations of state used in hydrodynamic simulations of planet impacts therefore lack reliable data for this important phenomenon. Here, we present the first constraints on the liquid-vapor critical point and coexistence phase boundary of Mg2SiO4 computed from ab initio molecular dynamics simulations. We found that the vapor is depleted in magnesium and enriched in silica and oxygen, while the coexisting liquid is enriched in magnesium and depleted in oxygen, from which we infer vaporization is incongruent. The critical point was estimated from an equation of state fit to the data. The results are in line with recent calculations of MgSiO3 and together confirm that extant multiphase equation of state (EOS) models used in planetary accretion modeling significantly underestimate the amount of supercritical material postimpact.

More Details

Shock compression of niobium from first-principles

Journal of Applied Physics

Weck, Philippe F.; Townsend, Joshua P.; Cochrane, Kyle R.; Crockett, Scott D.; Moore, Nathan W.

The equation of state (EOS) of bulk niobium (Nb) was investigated within the framework of density functional theory, with Mermin's generalization to finite temperatures. The shock Hugoniot for fully-dense and porous Nb was obtained from canonical ab initio molecular dynamics simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled along isotherms between 300 and 4000 K, for densities ranging from ρ=5.5 to 12 g/cm3. Results from simulations compare favorably with room-temperature multianvil and diamond anvil cell data for fully-dense Nb samples and with a recent tabulated SESAME EOS. The results of this study indicate that, for the application of weak and intermediate shocks, the tabular EOS models are expected to give reliable predictions.

More Details
47 Results
47 Results