Low-Z nanocrystalline diamond (NCD) grids have been developed to reduce spurious fluorescence and avoid X-ray peak overlaps or interferences between the specimen and conventional metal grids. Here, the low-Z NCD grids are non-toxic and safe to handle, conductive, can be subjected to high-temperature heating experiments, and may be used for analytical work in lieu of metal grids. Both a half-grid geometry, which can be used for any lift-out method, or a full-grid geometry that can be used for ex situ lift-out or thin film analyses, can be fabricated and used for experiments.
Here, a direct comparison between electron transparent transmission electron microscope (TEM) samples prepared with gallium (Ga) and xenon (Xe) focused ion beams (FIBs) is performed to determine if equivalent quality samples can be prepared with both ion species. We prepared samples using Ga FIB and Xe plasma focused ion beam (PFIB) while altering a variety of different deposition and milling parameters. The samples’ final thicknesses were evaluated using STEM-EELS $\textit{t/λ}$ data. Using the Ga FIB sample as a standard, we compared the Xe PFIB samples to the standard and to each other. We show that although the Xe PFIB sample preparation technique is quite different from the Ga FIB technique, it is possible to produce high-quality, large area TEM samples with Xe PFIB. We also describe best practices for a Xe PFIB TEM sample preparation workflow to enable consistent success for any thoughtful FIB operator. For Xe PFIB, we show that a decision must be made between the ultimate sample thickness and the size of the electron transparent region.
The fabrication of long-lived electrical contacts to thermoelectric Bi2Te3-based modules is a challenging problem due to chemical incompatibilities and rapid diffusion rates. Previously, technical guidance from SAND report 2015-7203 selected electroplated Au as the preferred method for fabrication of long-lived contacts because of concerns that the grain structure of sputtered/physical vapor deposited (PVD) Au contacts can evolve during aging. We have re-evaluated PVD Au contacts and show that they are appropriate for long-life service. We measure grain size and morphology at different aging times under accelerated temperature gradient conditions, and we show that the PVD Au contacts are stable and remain relatively unchanged. The PVD Au fabricated here is not subject to the deterioration observed in the previous report.
Structural alloys may experience corrosion when exposed to molten chloride salts due to selective dissolution of active alloying elements. One way to prevent this is to make the molten salt reducing. For the KCl + MgCl2 eutectic salt mixture, pure Mg can be added to achieve this. However, Mg can form intermetallic compounds with nickel at high temperatures, which may cause alloy embrittlement. This study shows that an optimum level of excess Mg could be added to the molten salt which will prevent corrosion of alloys like 316 H, while not forming any detectable Ni-Mg intermetallic phases on Ni-rich alloy surfaces.
The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte-electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force microscopy (KPFM) and neutron depth profiling (NDP), to identify the rate-limiting interface in operating Si-LiPON-LiCoO2 solid-state batteries by mapping the contact potential difference (CPD) and the corresponding Li distributions. The contributions from ions, electrons, and interfaces are deconvolved by correlating the CPD profiles with Li-concentration profiles and by comparisons with first-principles-informed modeling. We find that the largest potential drop and variation in the Li concentration occur at the anode-electrolyte interface, with a smaller drop at the cathode-electrolyte interface and a shallow gradient within the bulk electrolyte. Correlating these results with electrochemical impedance spectroscopy following battery cycling at low and high rates confirms a long-standing conjecture linking large potential drops with a rate-limiting interfacial process.
The passivation of polycrystalline nickel surfaces against hydrogen uptake by oxygen is investigated experimentally with low energy ion scattering (LEIS), direct recoil spectroscopy (DRS), and thermal desorption spectroscopy (TDS). These techniques are highly sensitive to surface hydrogen, allowing the change in hydrogen adsorption in response to varying amounts of oxygen exposure to be measured. The chemical composition of a nickel surface during a mixed oxygen and hydrogen exposure was characterized with LEIS and DRS, while the uptake and activation energies of hydrogen on a nickel surface with preadsorbed oxygen were quantified with TDS. By and large, these measurements of how the oxygen and hydrogen surface coverage varied in response to oxygen exposure were found to be consistent with predictions of a simple site-blocking model. This finding suggests that, despite the complexities that arise due to polycrystallinity, the oxygen-induced passivation of a polycrystalline nickel surface against hydrogen uptake can be approximated by a simple site-blocking model.
This project focused on providing a fundamental physico-chemical understanding of the coupling mechanisms of corrosion- and radiation-induced degradation at material-salt interfaces in Ni-based alloys operating in emulated Molten Salt Reactor(MSR) environments through the use of a unique suite of aging experiments, in-situ nanoscale characterization experiments on these materials, and multi-physics computational models. The technical basis and capabilities described in this report bring us a step closer to accelerate the deployment of MSRs by closing knowledge gaps related to materials degradation in harsh environments.
Liquid organic hydrogen carriers such as alcohols and polyols are a high-capacity means of transporting and reversibly storing hydrogen that demands effective catalysts to drive the (de)hydrogenation reactions under mild conditions. We employed a combined theory/experiment approach to develop MOF-74 catalysts for alcohol dehydrogenation and examine the performance of the open metal sites (OMS), which have properties analogous to the active sites in high-performance single-site catalysts and homogeneous catalysts. Methanol dehydrogenation was used as a model reaction system for assessing the performance of five monometallic M-MOF-74 variants (M = Co, Cu, Mg, Mn, Ni). Co-MOF-74 and Ni-MOF-74 give the highest H2 productivity. However, Ni-MOF-74 is unstable under reaction conditions and forms metallic nickel particles. To improve catalyst activity and stability, bimetallic (NixMg1-x)-MOF-74 catalysts were developed that stabilize the Ni OMS and promote the dehydrogenation reaction. An optimal composition exists at (Ni0.32Mg0.68)-MOF-74 that gives the greatest H2 productivity, up to 203 mL gcat-1 min-1 at 300 °C, and maintains 100% selectivity to CO and H2 between 225-275 °C. The optimized catalyst is also active for the dehydrogenation of other alcohols. DFT calculations reveal that synergistic interactions between the open metal site and the organic linker lead to lower reaction barriers in the MOF catalysts compared to the open metal site alone. This work expands the suite of hydrogen-related reactions catalyzed by MOF-74 which includes recent work on hydroformulation and our earlier reports of aryl-ether hydrogenolysis. Moreover, it highlights the use of bimetallic frameworks as an effective strategy for stabilizing a high density of catalytically active open metal sites. This journal is
The surfaces of textured polycrystalline N-type bismuth telluride and P-type antimony telluride materials were investigated using ex situ photoelectron emission microscopy (PEEM). PEEM enabled imaging of the work function for different oxidation times due to exposure to air across sample surfaces. The spatially averaged work function was also tracked as a function of air exposure time. N-type bismuth telluride showed an increase in the work function around grain boundaries relative to grain interiors during the early stages of air exposure-driven oxidation. At longer time exposure to air, the surface became homogenous after a ∼5 nm-thick oxide formed. X-ray photoemission spectroscopy was used to correlate changes in PEEM imaging in real space and work function evolution to the progressive growth of an oxide layer. The observed work function contrast is consistent with the pinning of electronic surface states due to the defects at a grain boundary.
In this study, we report on the thermal conductivity of amorphous carbon generated in diamond via nitrogen ion implantation (N 3 + at 16.5 MeV). Transmission electron microscopy techniques demonstrate amorphous band formation about the longitudinal projected range, localized approximately 7 μm beneath the sample surface. While high-frequency time-domain thermoreflectance measurements provide insight into the thermal properties of the near-surface preceding the longitudinal projected range depth, a complimentary technique, steady-state thermoreflectance, is used to probe the thermal conductivity at depths which could not otherwise be resolved. Through measurements with a series of focusing objective lenses for the laser spot size, we find the thermal conductivity of the amorphous region to be approximately 1.4 W m-1 K-1, which is comparable to that measured for amorphous carbon films fabricated through other techniques.
Austenitic stainless steel microstructures produced by directed energy deposition (DED) are analogous to those developed during welding, particularly high energy density welding. To better understand microstructural development during DED, theories of microstructural evolution, which have been established to contextualize weld microstructures, are applied in this study to microstructural development in DED austenitic stainless steels. Phenomenological welding models that describe the development of oxide inclusions, compositional microsegregation, ferrite, matrix austenite grains, and dislocation substructures are utilized to clarify microstructural evolution during deposition of austenitic stainless steels. Two different alloys, 304L and 316L, are compared to demonstrate the broad applicability of this framework for understanding microstructural development during the DED process. Despite differences in grain morphology and solidification mode for these two alloys (which can be attributed to compositional differences), similar tensile properties are achieved. It is the fine-scale compositional segregation and dislocation structures that ultimately determine the strength of these materials. The evolution of microsegregation and dislocation structures is shown to be dependent on the rapid solidification and thermomechanical history of the DED processing method and not the composition of the starting material.
To develop a fundamental understanding of dynamic strain aging, discovery experiments were designed and completed to inform the development of a dislocation based micromechanical constitutive model that will ultimately tie to continuum level plasticity and failure models. Dynamic strain aging occurs when dislocation motion is hindered by the repetitive interaction of solute atoms, most frequently interstitials, with dislocation cores. Initially, the solute atmospheres pin the dislocation core until the virtual force on the dislocation is high enough to allow glissile motion. At temperatures where the interstitials are mobile enough, the atmospheres can repeatedly reform, lock, and release dislocations producing a characteristic serrated flow curve. This phenomenon can produce unusual mechanical behavior of materials and changes in the strain rate and temperature responses. Detrimental effects such as loss of ductility often accompany these altered responses.
Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue-memory-based neuromorphic computing can be orders of magnitude more energy efficient at data-intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer-sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria-stabilized zirconia (YSZ), toward eliminating filaments. Filament-free, bulk-RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk-RRAM devices using TiO2-X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk-RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy-efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.
The thermodynamic stability and melting point of magnesium borohydride were probed under hydrogen pressures up to 1000 bar (100 MPa) and temperatures up to 400 °C. At 400 °C, Mg(BH4)2 was found to be chemically stable between 700 and 1000 bar H2, whereas under 350 bar H2 or lower pressures, the bulk material partially decomposed into MgH2 and MgB12H12. The melting point of solvent-free Mg(BH4)2 was estimated to be 367-375 °C, which was above previously reported values by 40-90 °C. Our results indicated that a high hydrogen backpressure is needed to prevent the decomposition of Mg(BH4)2 before measuring the melting point and that molten Mg(BH4)2 can exist as a stable liquid phase between 367 and 400 °C under hydrogen overpressures of 700 bar or above. The occurrence of a pure molten Mg(BH4)2 phase enabled efficient melt-infiltration of Mg(BH4)2 into the pores of porous templated carbons (CMK-3 and CMK-8) and graphene aerogels. Both transmission electron microscopy and small-angle X-ray scattering confirmed efficient incorporation of the borohydride into the carbon pores. The Mg(BH4)2@carbon samples exhibited comparable hydrogen capacities to bulk Mg(BH4)2 upon desorption up to 390 °C based on the mass of the active component; the onset of hydrogen release was reduced by 15-25 °C compared to the bulk. Importantly, melt-infiltration under hydrogen pressure was shown to be an efficient way to introduce metal borohydrides into the pores of carbon-based materials, helping to prevent particle agglomeration and formation of stable closo-polyborate byproducts.
Noble gases are generated within solids in nuclear environments and coalesce to form gas stabilized voids or cavities. Ion implantation has become a prevalent technique for probing how gas accumulation affects microstructural and mechanical properties. Transmission electron microscopy (TEM) allows measurement of cavity density, size, and spatial distributions post-implantation. While post-implantation microstructural information is valuable for determining the physical origins of mechanical property degradation in these materials, dynamic microstructural changes can only be determined by in situ experimentation techniques. We present in situ TEM experiments performed on Pd, a model face-centered cubic metal that reveals real-time cavity evolution dynamics. Observations of cavity nucleation and evolution under extreme environments are discussed.
Tensile properties, fatigue crack initiation, fatigue crack growth rate, and fatigue life are evaluated in 304L austenitic stainless steel fabricated by directed energy deposition (DED). Large lack of fusion (LoF) defects (often >1 mm in length) significantly reduce ultimate tensile strength and ductility, as well as accelerate fatigue crack initiation and reduce fatigue life. In comparison, small spherical defects (<100 μm in diameter) have less effect on tensile and fatigue properties. Fatigue crack growth rate is less severely affected by defects than other properties, showing only local acceleration in the proximity of LoF defects. Therefore, shorter fatigue life is attributed to the role of LoF defects on facilitating fatigue crack initiation and to a lesser extent fatigue crack propagation. Additionally, the fatigue life can be normalized for defects by considering their effect on ultimate tensile strength, suggesting that in the limit of low defect population, the fatigue strength of additively manufactured stainless steel is similar to conventional wrought materials.
Microstructures and mechanical properties are evaluated in austenitic stainless steel structures fabricated by directed energy deposition (DED) considering the effects of applied loading orientation, build geometry, and distance from the deposition baseplate. Locations within an as-deposited build with different thermomechanical history display different yield strength, while those locations with similar history have approximately the same yield strength, regardless of test specimen orientation. Thermal expansion of deposited material near the baseplate is inhibited by the mechanical constraint imposed by the baseplate, promoting plastic deformation and producing a high density of dislocations. Concurrently, high initial cooling rates decrease away from the baseplate as the build is heated, causing an increased spacing of cellular solidification features. An analysis of strengthening mechanisms quantitatively established for the first time the important strengthening contribution of high dislocation densities in the materials (166–191 MPa) to yield strength that ranged from 438 to 553 MPa in the present DED fabricated structures. A newly adopted mechanistic relationship for microsegregation strengthening from the literature indicated an additional important contribution to strengthening (123–135 MPa) due to the cellular solidification features. These findings are corroborated by the measured evolution of microstructure and hardness caused by annealing the DED material. These results suggest that the mechanical properties of deposited austenitic stainless steels can be influenced by controlling thermomechanical history during the manufacturing process to alter the character of compositional microsegregation and the amount of induced plastic deformation.
Additive manufacturing (AM) offers the potential for increased design flexibility in the low volume production of complex engineering components for hydrogen service. However the suitability of AM materials for such extreme service environments remains to be evaluated. This work examines the effects of internal and external hydrogen on AM type 304L austenitic stainless steels fabricated via directed-energy deposition (DED) and powder bed fusion (PBF) processes. Under ambient test conditions, AM materials with minimal manufacturing defects exhibit excellent combinations of tensile strength, tensile ductility, and fatigue resistance. To probe the effects of extreme hydrogen environments on the AM materials, tensile and fatigue tests were performed after thermalprecharging in high pressure gaseous hydrogen (internal H) or in high pressure gaseous hydrogen (external H). Hydrogen appears to have a comparable influence on the AM 304L as in wrought materials, although the micromechanisms of tensile fracture and fatigue crack growth appear distinct. Specifically, microstructural characterization implicates the unique solidification microstructure of AM materials in the propagation of cracks under conditions of tensile fracture with hydrogen. These results highlight the need to establish comprehensive microstructure-property relationships for AM materials to ensure their suitability for use in extreme hydrogen environments.
This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.
This work proposes a finite element (FE) analysis workflow to simulate directed energy deposition (DED) additive manufacturing at a macroscopic length scale (i.e. part length scale) and to predict thermal conditions during manufacturing, as well as distortions, strength and residual stresses at the completion of manufacturing. The proposed analysis method incorporates a multi-step FE workflow to elucidate the thermal and mechanical responses in laser engineered net shaping (LENS) manufacturing. For each time step, a thermal element activation scheme captures the material deposition process. Then, activated elements and their associated geometry are analyzed first thermally for heat flow due to radiation, convection, and conduction, and then mechanically for the resulting stresses, displacements, and material property evolution. Simulations agree with experimentally measured in situ thermal measurements for simple cylindrical build geometries, as well as general trends of local hardness distribution and plastic strain accumulation (represented by relative distribution of geometrically necessary dislocations).
Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure–property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.
Additive manufacturing (AM) includes a diverse suite of innovative manufacturing processes for producing near-net shape metallic components, typically from powder or wire. Reported mechanical properties of materials produced by these processes varies significantly and can usually be correlated with the relative porosity in the materials. In this study, relatively simple test components were manufactured from type 304L austenitic stainless steel by powder bed fusion (PBF). The quality of the components depends on a host of manufacturing parameters as well as the characteristics of the feedstock. In this study, the focus is the bulk material response. Tensile properties are reported for PBF type 304L produced in similar build geometries on two different machines with independent operators. Additionally, the effect of hydrogen on the tensile properties of the AM materials is evaluated. The goal of this study is to provide a benchmark for tensile properties of PBF 304L material in the context of wrought type 304L, and to make a preliminary assessment of the effects of hydrogen on tensile properties.
The family of three-dimensional topological insulators opens new avenues to discover novel photophysics and to develop novel types of photodetectors. ZrTe5 has been shown to be a Dirac semimetal possessing unique topological, electronic, and optical properties. Here, we present spatially resolved photocurrent measurements on devices made of nanoplatelets of ZrTe5, demonstrating the photothermoelectric origin of the photoresponse. Because of the high electrical conductivity and good Seebeck coefficient, we obtain noise-equivalent powers as low as 42 pW/Hz1/2, at room temperature for visible light illumination, at zero bias. We also show that these devices suffer from significant ambient reactivity, such as the formation of a Te-rich surface region driven by Zr oxidation as well as severe reactions with the metal contacts. This reactivity results in significant stresses in the devices, leading to unusual geometries that are useful for gaining insight into the photocurrent mechanisms. Our results indicate that both the large photothermoelectric response and reactivity must be considered when designing or interpreting photocurrent measurements in these systems.
Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.
Direct energy deposition (DED) is an additive manufacturing process that can produce complex near-net shape metallic components in a single manufacturing step. DED additive manufacturing has the potential to reduce feedstock material waste, streamline manufacturing chains, and enhance design flexibility. A major impediment to broader acceptance of DED technology is limited understanding of defect populations in the novel microstructures produced by DED and their relationship to process parameters and resultant mechanical properties. A design choice as simple as changing the build orientation has been observed to result in differences as great as ∼25% in yield strength for type 304L austenitic stainless steel deposited with otherwise identical deposition parameters. To better understand the role of build orientation and resultant defect populations on fatigue behavior in DED 304L, tension-tension fatigue testing has been performed on circumferentially notched cylindrical test specimens extracted from both vertical and horizontal orientations relative to the build direction. Notched fatigue behavior was found to be strongly influenced by the manufacturing defect populations of the material for different build orientations.
Laser engineered net shaping (LENS) is an additive manufacturing process that presents a promising method of creating or repairing metal parts not previously feasible with traditional manufacturing methods. The LENS process involves the directed deposition of metal via a laser power source and a spray of metal powder co-located to create and feed a molten pool (also referred to generically as Directed Energy Deposition, DED). DED technologies are being developed for use in prototyping, repair, and manufacturing across a wide variety of materials including stainless steel, titanium, tungsten carbidecobalt, aluminum, and nickel based superalloys. However, barriers to the successful production and qualification of LENS produced or repaired parts remain. This work proposes a finite element (FE) analysis methodology capable of simulating the LENS process at the continuum length scale (i.e. part length scale). This method incorporates an element activation scheme wherein only elements that exceed the material melt temperature during laser heating are activated and carried through to subsequent analysis steps. Following the initial element activation calculation, newly deposited, or activated elements and the associated geometry, are carried through to thermal and mechanical analyses to calculate heat flow due to radiation, convection, and conduction as well as stresses and displacements. The final aim of this work is to develop a validated LENS process simulation capability that can accurately predict temperature history, final part shape, distribution of strength, microstructural properties, and residual stresses based on LENS process parameters.
The Enhanced Surveillance Sub-program has an annual NNSA requirement to submit a comprehensive report on all our fiscal year activities right after the start of the next calendar year. As most of you know, we collate all of our PI task submissions into a single volume that we send to NNSA, our customers, and use for other programmatic purposes. The functional objective of this report is to formally document the purpose, status, and accomplishments and impacts of all our work. For your specific submission, please follow the instructions described below and use the template provided. These are essentially the same as was used last year. We recognize this report may also include information on specific age-related findings that you will provide again in a few months as input to the Stockpile Annual Assessment process (e.g., in the submittal of your Component Assessment Report). However, the related content of your ES AR input should provide an excellent foundation that can simply be updated as needed for your Annual Assessment input.
This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte-interphase layer, and this cross-over can be modeled and predicted.
Nanostructuring of thermoelectric materials is expected to enhance thermoelectric properties by reducing the thermal conductivity and improving the power factor from that of homogeneous bulk materials. In multiphase, nanostructured thermoelectric materials, an understanding of precipitation mechanisms and phase stability is crucial for engineering systems with optimal thermoelectric performance. In this presentation we will discuss our investigations of the morphological evolution, orientation relationship, and composition of Ag{sub 2}Te precipitates in PbTe using transmission electron microscopy (TEM) and atom probe tomography (APT). Annealing in the region of two phase equilibrium between Ag{sub 2}Te and PbTe results in the formation of monoclinic {beta}-Ag{sub 2}Te precipitates as determined by x-ray and electron diffraction studies. These precipitates are aligned to the PbTe matrix with an orientation relationship that aligns the Te sub-lattices in the monoclinic and rock salt structures. This relationship is the same as we have reported earlier for {beta}-Ag{sub 2}Te precipitates in rocksalt AgSbTe{sub 2}. Observations using TEM and APT suggest that the Ag{sub 2}Te precipitates initially form as coherent spherical precipitates which upon coarsening evolve into flattened semi-coherent disks along the <100>PbTe directions which is consistent with theoretical predictions for elastically strained precipitates in a matrix. Our HRTEM observations show that sufficiently small precipitates are coherently embedded, while larger precipitates exhibit misfit dislocations and multiple monoclinic variants to relieve the elastic strain. Analysis of the composition of both precipitate groups using APT indicates that the larger precipitates exhibit compositions close to equilibrium while the smaller nanoscale precipitates exhibit enhanced Pb compositions. This detailed analysis of the orientation relationship, morphology, composition, and coarsening behavior of embedded Ag{sub 2}Te precipitates may be helpful in understanding the precipitation mechanisms and microstructure of related thermoelectric materials, such as LAST.
The precipitation of Ag{sub 2}Te in a PbTe matrix is investigated using electron microscopy and atom probe tomography. We observe the formation of oriented nanoscale Ag{sub 2}Te precipitates in PbTe. These precipitates initially form as coherent spherical nanoparticles and evolve into flattened semi-coherent disks during coarsening. This change in morphology is consistent with equilibrium shape theory for coherently strained precipitates. Upon annealing at elevated temperatures these precipitates eventually revert to an equiaxed morphology. We suggest this shape change occurs once the precipitates grow beyond a critical size, making it favorable to relieve the elastic coherency strains by forming interfacial misfit dislocations. These investigations of the shape and coherency of Ag{sub 2}Te precipitates in PbTe should prove useful in the design of nanostructured thermoelectric materials.