Publications

122 Results
Skip to search filters

Big Adaptive Rotor Phase I Final Report

Johnson, Nick J.; Paquette, Joshua P.; Bortolotti, Pietro B.; Bolinger, Mark B.; Camarena, Ernesto C.; Anderson, Evan M.; Ennis, Brandon L.

The Big Adaptive Rotor (BAR) project was initiated by the U.S. Department of Energy (DOE) in 2018 with the goal of identifying novel technologies that can enable large (>100 meter [m]) blades for low-specific-power wind turbines. Five distinct tasks were completed to achieve this goal: 1. Assessed the trends, impacts, and value of low-specific-power wind turbines; 2. Developed a wind turbine blade cost-reduction road map study; 3. Completed research-and-development opportunity screening; 4. Performed detailed design and analysis; and, 5. Assessed low-cost carbon fiber. These tasks were completed by the national laboratory team consisting of Sandia National Laboratories (Sandia), the National Renewable Energy Laboratory (NREL), and Lawrence Berkeley National Laboratory.

More Details

Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance

Journal of Physics: Conference Series

Maniaci, David C.; Westergaard, Carsten H.; Hsieh, Alan H.; Paquette, Joshua P.

Many factors that influence the effect of leading edge erosion on annual energy production are uncertain, such as the time to initiation, damage growth rate, the blade design, operational conditions, and atmospheric conditions. In this work, we explore how the uncertain parameters that drive leading edge erosion impact wind turbine power performance using a combination of uncertainty quantification and wind turbine modelling tools, at both low and medium fidelity. Results will include the predicted effect of erosion on several example wind plant sites for representative ranges of wind turbine designs, with a goal of helping wind plant operators better decide mitigation strategies.

More Details

Investigation of flutter for large, highly flexible wind turbine blades

Journal of Physics: Conference Series

Kelley, C.L.; Paquette, Joshua P.

Improvements to the Sandia blade aeroelastic stability tool have been implemented to predict flutter for large, highly flexible wind turbine blade designs. The aerodynamic lift and moment caused by harmonic edge-wise motion are now included, but did not change the flutter solution, even for highly flexible blades. Flutter analysis of future, large blade designs is presented based on scaling trends. The analysis shows that flutter speed decreases at a rate similar to maximum rotor speed for increasing blade sizes: Ωflutter, α, Ω α, 1/L. This indicates the flutter margin is not directly affected by blade length. Rather, it was innovative design technology choices that predicted flutter in previous studies. A 100 m blade, flexible enough to be rail transported, was analyzed and it exhibited soft flutter below rated rotor speed. This indicated that excessive fatigue damage may occur due to limit cycle oscillations for blades that incorporate highly flexible designs.

More Details

Detailed analysis of a waked turbine using a high-resolution scanning lidar

Journal of Physics: Conference Series

Herges, Thomas H.; Berg, J.C.; Bryant, J.T.; White, J.R.; Paquette, Joshua P.; Naughton, Brian T.

Sandia National Laboratories and the National Renewable Energy Laboratory conducted a wake-steering field campaign at the Scaled Wind Farm Technology facility. The campaign included the use of two highly instrumented V27 wind turbines, an upstream met tower, and high-resolution wake measurements of the upstream wind turbine using a customized scanning lidar from the Technical University of Denmark (DTU). The present work investigates the impact of the upstream wake on the downstream turbine power and blade loads as the wake swept across the rotor in various waked conditions. The wake position was tracked using the DTU SpinnerLidar and synchronized to the met tower and turbine sensors. Fully and partially waked conditions reduced the power output and increased the fatigue loading on the downstream wind turbine. Partial wake impingement was found to result in a 10% increase in fatigue loading over the fully waked condition. Rotational sampling of the blade root bending moments revealed that the fatigue damage accrued during full turbine waking, was primarily caused by turbulence within the wake rather than velocity shear, while the partially waked turbine experienced a large 1-per revolution fatigue due to shear. The development of a power to fatigue load metric curve indicated the wake positions where shifting the wake has the most benefit for the waked turbine.

More Details

Wind turbine blade load characterization under yaw offset at the SWiFT facility

Journal of Physics: Conference Series

Ennis, Brandon L.; White, Jonathan; Paquette, Joshua P.

Wind turbine yaw offset reduces power and alters the loading on a stand-alone wind turbine. The manner in which loads are affected by yaw offset has been analyzed and characterized based on atmospheric conditions in this paper using experimental data from the SWiFT facility to better understand the correlation between yaw offset and turbine performance.

More Details

Design Studies for Deep-Water Floating Offshore Vertical Axis Wind Turbines

Griffith, D.T.; Barone, Matthew F.; Paquette, Joshua P.; Owens, Brian C.; Bull, Diana L.; Simao-Ferriera, Carlos S.; goupee, andrew g.; Fowler, Matt F.

Deep - water offshore sites are an untapped opportunity to bring large - scale offshore wind energy to coastal population centers. The primary challenge has been the projected high costs for floating offshore wind systems. T his work presents a comprehensive investigat ion of a new opportunity for deep - water offshore wind using large - scale vertical axis wind turbines. Owing to inherent features of this technology , t here is a potential transformational opportunity to address the major cost drivers for floating w ind using vertical axis wind turbines . T he focus of this report is to evaluate the technical potential for this new technology. The approach to evaluating this potential wa s to perform system design studies focused on improving the understanding of technical performance parameters while l ooking for cost reduction opportunities. VAWT design codes we re developed in order to perform these design studies. To gain a better understanding of the desi gn space for floating VAWT systems , a comprehensive design study of multiple rotor configuration options was carried out . Floating platforms and moorings were then sized and evaluated for each of the candidate rotor configurations . Preliminary LCOE estimates and LCOE ranges were produced based on the design stu dy results for each of the major turbine and system components . The major outcomes of this study are a comprehensive technology assessment of VAWT performance and preliminary LCOE estimates that demonstrate that floating VAWTs may have favorable performanc e and costs in comparison to conventional HAWTs in the deep - water offshore environment where floating systems are required , indicating that this new technology warrants further study .

More Details

Probability of Detection Study to Assess the Performance of Nondestructive Inspection Methods for Wind Turbine Blades

Roach, D.; Rice, Thomas M.; Paquette, Joshua P.

Wind turbine blades pose a unique set of inspection challenges that span from very thick and attentive spar cap structures to porous bond lines, varying core material and a multitude of manufacturing defects of interest. The need for viable, accurate nondestructive inspection (NDI) technology becomes more important as the cost per blade, and lost revenue from downtime, grows. NDI methods must not only be able to contend with the challenges associated with inspecting extremely thick composite laminates and subsurface bond lines, but must also address new inspection requirements stemming from the growing understanding of blade structural aging phenomena. Under its Blade Reliability Collaborative program, Sandia Labs quantitatively assessed the performance of a wide range of NDI methods that are candidates for wind blade inspections. Custom wind turbine blade test specimens, containing engineered defects, were used to determine critical aspects of NDI performance including sensitivity, accuracy, repeatability, speed of inspection coverage, and ease of equipment deployment. The detection of fabrication defects helps enhance plant reliability and increase blade life while improved inspection of operating blades can result in efficient blade maintenance, facilitate repairs before critical damage levels are reached and minimize turbine downtime. The Sandia Wind Blade Flaw Detection Experiment was completed to evaluate different NDI methods that have demonstrated promise for interrogating wind blades for manufacturing flaws or in-service damage. These tests provided the Probability of Detection information needed to generate industry-wide performance curves that quantify: 1) how well current inspection techniques are able to reliably find flaws in wind turbine blades (industry baseline) and 2) the degree of improvements possible through integrating more advanced NDI techniques and procedures. _____________ S a n d i a N a t i o n a l L a b o r a t o r i e s i s a m u l t i m i s s i o n l a b o r a t o r y m a n a g e d a n d o p e r a t e d b y N a t i o n a l T e c h n o l o g y a n d E n g i n e e r i n g S o l u t i o n s o f S a n d i a , L L C , a w h o l l y o w n e d s u b s i d i a r y o f H o n e y w e l l I n t e r n a t i o n a l , I n c . , f o r t h e U . S . D e p a r t m e n t o f E n e r g y ' s N a t i o n a l N u c l e a r S e c u r i t y A d m i n i s t r a t i o n u n d e r c o n t r a c t D E - N A 0 0 0 3 5 2 5 .

More Details

Experimental Measurement and CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion

Journal of Physics: Conference Series

Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; Van Dam, C.P.; Paquette, Joshua P.

Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.

More Details

A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines

Journal of Physics: Conference Series

Griffith, Daniel G.; Paquette, Joshua P.; Barone, Matthew F.; Goupee, Andrew J.; Fowler, Matthew J.; Bull, Diana L.; Owens, Brian

Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.

More Details

Sandia SWiFT Wind Turbine Manual

White, Jonathan; LeBlanc, Bruce P.; Berg, Jonathan C.; Bryant, Joshua B.; Johnson, Wesley D.; Paquette, Joshua P.

The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems.

More Details

NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

Ennis, Brandon L.; Paquette, Joshua P.

This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

More Details

Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies

Wind Energy

Griffith, Daniel G.; Resor, Brian R.; Paquette, Joshua P.

Offshore wind turbines are an attractive source for clean and renewable energy for reasons including their proximity to population centers and higher capacity factors. One obstacle to the more widespread installation of offshore wind turbines in the USA, however, is that recent projections of offshore operations and maintenance costs vary from two to five times the land-based costs. One way in which these costs could be reduced is through use of a structural health and prognostics management (SHPM) system as part of a condition-based maintenance paradigm with smart loads management. Our paper contributes to the development of such strategies by developing an initial roadmap for SHPM, with application to the blades. One of the key elements of the approach is a multiscale simulation approach developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. A case study of a trailing edge disbond is analysed to demonstrate the multiscale sensitivity of damage approach and to show the potential life extension and increased energy capture that can be achieved using simple changes in the overall turbine control and loads management strategy. Finally, the integration of health monitoring information, economic considerations such as repair costs versus state of health, and a smart loads management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

More Details

Blade reliability collaborative :

Ogilvie, Alistair O.; Paquette, Joshua P.

The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

More Details

Innovative offshore vertical-axis wind turbine rotor project

European Wind Energy Conference and Exhibition 2012, EWEC 2012

Paquette, Joshua P.; Barone, Matthew F.

A research project has recently begun to explore the viability of vertical axis wind turbines (VAWT) for future U.S. offshore installations, especially in resource-rich, deep-water locations. VAWTs may offer reductions in cost across multiple categories, including operations and maintenance (O&M), support structure, installation, and electrical infrastructure costs. The cost of energy (COE) reduction opportunities follow from three fundamental characteristics of the VAWT: lower turbine center of gravity, reduced machine complexity, and the opportunity for scaling the machine to very large sizes (10-20 MW). This paper discusses why VAWTs should be considered for offshore installation, describes the project that has been created to explore this prospect, and gives some early results from the project. These results indicate a potential for COE reduction of over 20%.

More Details

Structural health and prognostics management for offshore wind turbines :

Griffith, Daniel G.; Resor, Brian R.; Paquette, Joshua P.

Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

More Details

Simulating the entire life of an offshore wind turbine

European Wind Energy Conference and Exhibition 2012, EWEC 2012

Barone, Matthew; Paquette, Joshua P.; Resor, Brian R.; Manuel, Lance; Nguyen, Hieu

Sixty-three years of aero-hydro-elastic loads simulations are demonstrated for a 5 MW offshore wind turbine deployed in shallow water. This large amount of simulation was made possible through the use of a high-performance computing cluster. The resulting one-hour extreme load distributions are examined; the extensive number of one-hour realizations allows for direct estimation of fifty-year return loads, without resorting to extrapolation. This type of simulation study opens up new possibilities for developing wind turbine design standards and discovering physical mechanisms that lead to extreme loads on wind turbine components.

More Details

Radar-cross-section reduction of wind turbines. part 1

McDonald, Jacob J.; Brock, Billy C.; Clem, Paul G.; Paquette, Joshua P.; Patitz, Ward E.; Calkins, David C.; Loui, Hung L.

In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

More Details

Preliminary structural design conceptualization for composite rotor for verdant power water current turbine

Paquette, Joshua P.

Sandia National Laboratories (SNL) and Verdant Power Inc. (VPI) have partnered under a Cooperative Research and Development Agreement (CRADA) to develop a new kinetic hydropower rotor. The rotor features an improved hydrodynamic and structural design which features state-of-the-art technology developed for the wind industry. The new rotor will have higher energy capture, increased system reliability, and reduction of overall cost of energy. This project was divided into six tasks: (1) Composite Rotor Project Planning and Design Specification; (2) Baseline Fatigue Testing and Failure analysis; (3) Develop Blade/Rotor Performance Model; (4) Hydrofoil Survey and Selection; (5) FEM Structural Design; and (6) Develop Candidate Rotor Designs and Prepare Final Report.

More Details

Mapping of 1D beam loads to the 3D wind blade for buckling analysis

Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference

Berg, Jonathan C.; Paquette, Joshua P.; Resor, Brian R.

This paper discusses the development of a consistent methodology for mapping one-dimensional distributed beam loads to a three-dimensional shell structure. The resultant force distribution is a linear approximation to the actual aerodynamic pressure distribution but is sufficient to obtain accurate strain and displacement results. The purpose of the mapping technique is to apply more realistic wind loads to the shell model of a wind turbine blade without the need to set up and run expensive computational fluid dynamics or fluid structure interaction problems. Subsequent buckling and stress analysis reveal how this approach compares to other simplified methods of defining the loads. Copyright © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils

Barone, Matthew F.; Paquette, Joshua P.

The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

More Details

Panel resonant behavior of wind turbine blades

Griffith, Daniel G.; Paquette, Joshua P.

The principal design drivers in the certification of wind turbine blades are ultimate strength, fatigue resistance, adequate tip-tower clearance, and buckling resistance. Buckling resistance is typically strongly correlated to both ultimate strength and fatigue resistance. A composite shell with spar caps forms the airfoil shape of a blade and reinforcing shear webs are placed inside the blade to stiffen the blade in the flap-wise direction. The spar caps are dimensioned and the shear webs are placed so as to add stiffness to unsupported panel regions and reduce their length. The panels are not the major flap-wise load carrying element of a blade; however, they must be designed carefully to avoid buckling while minimizing blade weight. Typically, buckling resistance is evaluated by consideration of the load-deflection behavior of a blade using finite element analysis (FEA) or full-scale static testing of blades under a simulated extreme loading condition. The focus of this paper is on the use of experimental modal analysis to measure localized resonances of the blade panels. It can be shown that the resonant behavior of these panels can also provide a means to evaluate buckling resistance by means of analytical or experimental modal analysis. Further, panel resonances have use in structural health monitoring by observing changes in modal parameters associated with panel resonances, and use in improving panel laminate model parameters by correlation with test data. In recent modal testing of wind turbine blades, a set of panel modes were measured. This paper will report on the findings of these tests and accompanying numerical and analytical modeling efforts aimed at investigating the potential uses of panel resonances for blade evaluation, health monitoring, and design.

More Details

An evaluation of wind turbine blade cross section analysis techniques

Resor, Brian R.; Paquette, Joshua P.; Laird, Daniel L.; Griffith, Daniel G.

The blades of a modern wind turbine are critical components central to capturing and transmitting most of the load experienced by the system. They are complex structural items composed of many layers of fiber and resin composite material and typically, one or more shear webs. Large turbine blades being developed today are beyond the point of effective trial-and-error design of the past and design for reliability is always extremely important. Section analysis tools are used to reduce the three-dimensional continuum blade structure to a simpler beam representation for use in system response calculations to support full system design and certification. One model simplification approach is to analyze the two-dimensional blade cross sections to determine the properties for the beam. Another technique is to determine beam properties using static deflections of a full three-dimensional finite element model of a blade. This paper provides insight into discrepancies observed in outputs from each approach. Simple two-dimensional geometries and three-dimensional blade models are analyzed in this investigation. Finally, a subset of computational and experimental section properties for a full turbine blade are compared.

More Details

Development of validated blade structural models

46th AIAA Aerospace Sciences Meeting and Exhibit

Griffith, Daniel G.; Paquette, Joshua P.; Carne, Thomas G.

The focus of this paper is on the development of validated models for wind turbine blades. Validation of these models is a comprehensive undertaking which requires carefully designing and executing experiments, proposing appropriate physics-based models, and applying correlation techniques to improve these models based on the test data. This paper will cover each of these three aspects of model validation, although the focus is on the third - model calibration. The result of the validation process is an understanding of the credibility of the model when used to make analytical predictions. These general ideas will be applied to a wind turbine blade designed, tested, and modeled at Sandia National Laboratories. The key points of the paper include discussions of the tests which are needed, the required level of detail in these tests to validate models of varying detail, and mathematical techniques for improving blade models. Results from investigations into calibrating simplified blade models are presented.

More Details
122 Results
122 Results