Publications

12 Results
Skip to search filters

GraphAlign: Graph-Enabled Machine Learning for Seismic Event Filtering

Michalenko, Joshua J.; Manickam, Indu; Heck, Stephen H.

This report summarizes results from a 2 year effort to improve the current automated seismic event processing system by leveraging machine learning models that can operated over the inherent graph data structure of a seismic sensor network. Specifically, the GraphAlign project seeks to utilize prior information on which stations are more likely to detect signals originating from particular geographic regions to inform event filtering. To date, the GraphAlign team has developed a Graphical Neural Network (GNN) model to filter out false events generated by the Global Associator (GA) algorithm. The algorithm operates directly on waveform data that has been associated to an event by building a variable sized graph of station waveforms nodes with edge relations to an event location node. This builds off of previous work where random forest models were used to do the same task using hand crafted features. The GNN model performance was analyzed using an 8 week IMS/IDC dataset, and it was demonstrated that the GNN outperforms the random forest baseline. We provide additional error analysis of which events the GNN model performs well and poorly against concluded by future directions for improvements.

More Details

Data Fusion via Neural Network Entropy Minimization for Target Detection and Multi-Sensor Event Classification

Linville, Lisa L.; Anderson, Dylan Z.; Michalenko, Joshua J.; Garcia, Jorge A.

Broadly applicable solutions to multimodal and multisensory fusion problems across domains remain a challenge because effective solutions often require substantive domain knowledge and engineering. The chief questions that arise for data fusion are in when to share information from different data sources, and how to accomplish the integration of information. The solutions explored in this work remain agnostic to input representation and terminal decision fusion approaches by sharing information through the learning objective as a compound objective function. The objective function this work uses assumes a one-to-one learning paradigm within a one-to-many domain which allows the assumption that consistency can be enforced across the one-to-many dimension. The domains and tasks we explore in this work include multi-sensor fusion for seismic event location and multimodal hyperspectral target discrimination. We find that our domain- informed consistency objectives are challenging to implement in stable and successful learning because of intersections between inherent data complexity and practical parameter optimization. While multimodal hyperspectral target discrimination was not enhanced across a range of different experiments by the fusion strategies put forward in this work, seismic event location benefited substantially, but only for label-limited scenarios.

More Details

Semi-supervised Bayesian Low-shot Learning

Adams, Jason R.; Goode, Katherine J.; Michalenko, Joshua J.; Lewis, Phillip J.; Ries, Daniel R.

Deep neural networks (NNs) typically outperform traditional machine learning (ML) approaches for complicated, non-linear tasks. It is expected that deep learning (DL) should offer superior performance for the important non-proliferation task of predicting explosive device configuration based upon observed optical signature, a task which human experts struggle with. However, supervised machine learning is difficult to apply in this mission space because most recorded signatures are not associated with the corresponding device description, or “truth labels.” This is challenging for NNs, which traditionally require many samples for strong performance. Semi-supervised learning (SSL), low-shot learning (LSL), and uncertainty quantification (UQ) for NNs are emerging approaches that could bridge the mission gaps of few labels and rare samples of importance. NN explainability techniques are important in gaining insight into the inferential feature importance of such a complex model. In this work, SSL, LSL, and UQ are merged into a single framework, a significant technical hurdle not previously demonstrated. Exponential Average Adversarial Training (EAAT) and Pairwise Neural Networks (PNNs) are chosen as the SSL and LSL methods of choice. Permutation feature importance (PFI) for functional data is used to provide explainability via the Variable importance Explainable Elastic Shape Analysis (VEESA) pipeline. A variety of uncertainty quantification approaches are explored: Bayesian Neural Networks (BNNs), ensemble methods, concrete dropout, and evidential deep learning. Two final approaches, one utilizing ensemble methods and one utilizing evidential learning, are constructed and compared using a well-quantified synthetic 2D dataset along with the DIRSIG Megascene.

More Details

Machine learning predictions of transition probabilities in atomic spectra

Atoms

Michalenko, Joshua J.; Murzyn, Christopher M.; Zollweg, Joshua D.; Wermer, Lydia; Van Omen, Alan J.; Clemenson, Michael D.

Forward modeling of optical spectra with absolute radiometric intensities requires knowledge of the individual transition probabilities for every transition in the spectrum. In many cases, these transition probabilities, or Einstein A-coefficients, quickly become practically impossible to obtain through either theoretical or experimental methods. Complicated electronic orbitals with higher order effects will reduce the accuracy of theoretical models. Experimental measurements can be prohibitively expensive and are rarely comprehensive due to physical constraints and sheer volume of required measurements. Due to these limitations, spectral predictions for many element transitions are not attainable. In this work, we investigate the efficacy of using machine learning models, specifically fully connected neural networks (FCNN), to predict Einstein A-coefficients using data from the NIST Atomic Spectra Database. For simple elements where closed form quantum calculations are possible, the data-driven modeling workflow performs well but can still have lower precision than theoretical calculations. For more complicated nuclei, deep learning emerged more comparable to theoretical predictions, such as Hartree–Fock. Unlike experiment or theory, the deep learning approach scales favorably with the number of transitions in a spectrum, especially if the transition probabilities are distributed across a wide range of values. It is also capable of being trained on both theoretical and experimental values simultaneously. In addition, the model performance improves when training on multiple elements prior to testing. The scalability of the machine learning approach makes it a potentially promising technique for estimating transition probabilities in previously inaccessible regions of the spectral and thermal domains on a significantly reduced timeline.

More Details

Semisupervised learning for seismic monitoring applications

Seismological Research Letters

Linville, Lisa L.; Anderson, Dylan Z.; Michalenko, Joshua J.; Galasso, Jennifer G.; Draelos, Timothy J.

The impressive performance that deep neural networks demonstrate on a range of seismic monitoring tasks depends largely on the availability of event catalogs that have been manually curated over many years or decades. However, the quality, duration, and availability of seismic event catalogs vary significantly across the range of monitoring operations, regions, and objectives. Semisupervised learning (SSL) enables learning from both labeled and unlabeled data and provides a framework to leverage the abundance of unreviewed seismic data for training deep neural networks on a variety of target tasks. We apply two SSL algorithms (mean-teacher and virtual adversarial training) as well as a novel hybrid technique (exponential average adversarial training) to seismic event classification to examine how unlabeled data with SSL can enhance model performance. In general, we find that SSL can perform as well as supervised learning with fewer labels. We also observe in some scenarios that almost half of the benefits of SSL are the result of the meaningful regularization enforced through SSL techniques and may not be attributable to unlabeled data directly. Lastly, the benefits from unlabeled data scale with the difficulty of the predictive task when we evaluate the use of unlabeled data to characterize sources in new geographic regions. In geographic areas where supervised model performance is low, SSL significantly increases the accuracy of source-type classification using unlabeled data.

More Details

Multimodal Data Fusion via Entropy Minimization

International Geoscience and Remote Sensing Symposium (IGARSS)

Michalenko, Joshua J.; Linville, Lisa L.; Anderson, Dylan Z.

The use of gradient-based data-driven models to solve a range of real-world remote sensing problems can in practice be limited by the uniformity of available data. Use of data from disparate sensor types, resolutions, and qualities typically requires compromises based on assumptions that are made prior to model training and may not necessarily be optimal given over-arching objectives. For example, while deep neural networks (NNs) are state-of-the-art in a variety of target detection problems, training them typically requires either limiting the training data to a subset over which uniformity can be enforced or training independent models which subsequently require additional score fusion. The method we introduce here seeks to leverage the benefits of both approaches by allowing correlated inputs from different data sources to co-influence preferred model solutions, while maintaining flexibility over missing and mismatching data. In this paper, we propose a new data fusion technique for gradient updated models based on entropy minimization and experimentally validate it on a hyperspectral target detection dataset. We demonstrate superior performance compared to currently available techniques and highlight the value of the proposed method for data regimes with missing data.

More Details

Multimodal Data Fusion via Entropy Minimization

Linville, Lisa L.; Michalenko, Joshua J.; Anderson, Dylan Z.

The use of gradient-based data-driven models to solve a range of real-world remote sensing problems can in practice be limited by the uniformity of available data. Use of data from disparate sensor types, resolutions, and qualities typically requires compromises based on assumptions that are made prior to model training and may not necessarily be optimal given over-arching objectives. For example, while deep neural networks (NNs) are state-of-the-art in a variety of target detection problems, training them typically requires either limiting the training data to a subset over which uniformity can be enforced or training independent models which subsequently require additional score fusion. The method we introduce here seeks to leverage the benefits of both approaches by allowing correlated inputs from different data sources to co-influence preferred model solutions, while maintaining flexibility over missing and mismatching data. In this work we propose a new data fusion technique for gradient updated models based on entropy minimization and experimentally validate it on a hyperspectral target detection dataset. We demonstrate superior performance compared to currently available techniques using a range of realistic data scenarios, where available data has limited spacial overlap and resolution.

More Details
12 Results
12 Results