Publications

6 Results
Skip to search filters

Using parallel stiffness to achieve improved locomotive efficiency with the Sandia STEPPR robot

Proceedings - IEEE International Conference on Robotics and Automation

Mazumdar, Anirban; Spencer, Steven; Salton, Jonathan R.; Hobart, Clinton G.; Love, Joshua A.; Dullea, Kevin; Kuehl, Michael K.; Blada, Timothy; Quigley, Morgan; Smith, Jesper; Bertrand, Sylvain; Wu, Tingfan; Pratt, Jerry; Buerger, Stephen B.

In this paper we introduce STEPPR (Sandia Transmission-Efficient Prototype Promoting Research), a bipedal robot designed to explore efficient bipedal walking. The initial iteration of this robot achieves efficient motions through powerful electromagnetic actuators and highly back-drivable synthetic rope transmissions. We show how the addition of parallel elastic elements at select joints is predicted to provide substantial energetic benefits: reducing cost of transport by 30 to 50 percent. Two joints in particular, hip roll and ankle pitch, reduce dissipated power over three very different gait types: human walking, human-like robot walking, and crouched robot walking. Joint springs based on this analysis are tested and validated experimentally. Finally, this paper concludes with the design of two unique parallel spring mechanisms to be added to the current STEPPR robot in order to provide improved locomotive efficiency.

More Details

Evaluation of urban vehicle tracking algorithms

IEEE Aerospace Conference Proceedings

Love, Joshua A.; Hansen, Ross L.; Melgaard, David K.; Karelitz, David B.; Pitts, Todd A.; Byrne, Raymond H.

Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase significantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, blob tracking is the norm. For higher resolution data, additional information may be employed in the detection and classification steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment. The algorithms considered are: random sample consensus (RANSAC), Markov chain Monte Carlo data association (MCMCDA), tracklet inference from factor graphs, and a proximity tracker. Each algorithm was tested on a combination of real and simulated data and evaluated against a common set of metrics.

More Details

Large scale tracking algorithms

Byrne, Raymond H.; Hansen, Ross L.; Love, Joshua A.; Melgaard, David K.; Pitts, Todd A.; Karelitz, David B.; Zollweg, Joshua D.; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.

Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

More Details
6 Results
6 Results