Vacuum Outgassing Study of Candidate Materials for Next Generation Pulsed Power and Accelerators: Improving the Boundary Conditions for Molecular Flow Simulations
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE International Pulsed Power Conference
High voltage vacuum systems with stringent vacuum requirements are often designed with ceramic insulators which have low flashover strength. In this paper, we report on experimental results comparing pulsed high voltage flashover of Rexolite®(cross-linked polystyrene), a pulsed power industry standard vacuum insulator, to Kel-F® (polyclorotrifluoroethylene), a plastic with significantly lower vacuum outgassing. Our results show similar surface flashover results with the two materials, with both exhibiting large spread in flashover electric field. The average electric field for flashover of each material agree well with predictions based on previously published results.
Physical Review Accelerators and Beams
Here we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 “bricks.” Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.
Physics of Plasmas
The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (∼1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Accelerators and Beams
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
Presently the Self Magnetic Pinch (SMP) diode is successfully utilized for flash radiography with pulsed power drivers. However, it is not capable of more than one pulse. Multi-pulse single-Axis radiography is most preferred since it provides images of time-evolving dynamic targets. In an SMP diode, because the anode cathode (A-K) gap is very small (∼1-2 cm), the debris from the anode converter target arrives soon after the first pulse and completely destroy the cathode electron emitter, and thus the diode cannot produce a second pulse. We propose a feasibility study to scientifically evaluate the idea of decoupling the anode converter from the cathode electron emitter. This work will be based on two successful previous works we have accomplished: first, making a very small pencil-like beam in a magnetically immersed foilless diode (M.G. Mazarakis et al., Applied Physics Letters, 7, pp. 832 (1996)); and second, successfully demonstrating the two-pulse operation of a foilless diode with the RIIM accelerator (M. G. Mazarakis et al., Applied Physics 64 part I pp. 4815, (1988) Our approach will combine the above experimentally demonstrated successful work. The generated beam of 40-50 kA will be propagated in the same diode magnetic solenoid for a sufficient distance before striking the converter target. This way the diode could be multi-pulsed before the target debris reaches the cathode. Although the above describes the option of a foilless diode and a solenoidal transport system, a similar design could be made for a non-immersed low emittance 10 kA velvet emitter foilless diode.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and postshot analysis of the experimental results are supported by 3-D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsed power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics. 3
This report documents work conducted in FY13 to conduct a feasibility study on thermal spray coated cathodes to be used in the RITS-6 accelerator in an attempt to improve surface uniformity and repeatability. Currently, the cathodes are coated with colloidal silver by means of painting by hand. It is believed that improving the cathode coating process could simplify experimental setup and improve flash x-ray radiographic performance. This report documents the experimental setup and summarizes the results of our feasibility study. Lastly, it describes the path forward and potential challenges that must be overcome in order to improve the process for creating uniform and repeatable silver coatings for cathodes.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Digest of Technical Papers-IEEE International Pulsed Power Conference
The 7 cavity, 1 MV linear transformer driver for radiography at Sandia National Laboratories has recently been upgraded to 21 cavities with an output voltage of 2.5 MV. In this paper, results from 2-D, r-z particle-in-cell simulations of the full 21 cavity system are presented. Each cavity feed is driven with its own external RLC circuit that is independently triggered, and has a realistic 45° slanted vacuum/insulator. Electrons are emitted from the central cathode with a conventional space-charge-limited emission model. Detailed diagnostics monitor electron loss to the anode, cavity conductors, and the insulators. The most significant and encouraging result is that the simulations have absolutely no electron loss to the insulators, even with large random variations in the trigger timing. © 2011 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Plasma Science
Abstract not provided.
We report on an option study of two potential x-ray systems for orthogonal radiography at Area C in the LANSCE facility at Los Alamos National Laboratory. The systems assessed are expected to be near equivalent systems to the presently existing Cygnus capability at the Nevada Test Site. Nominal dose and radiographic resolution of 4 rad (measured at one meter) and 1 mm spot are desired. Both a system study and qualitative design are presented as well as estimated cost and schedule. Each x-ray system analyzed is designed to drive a rod-pinch electron beam diode capable of producing the nominal dose and spot.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings of the 2008 IEEE International Power Modulators and High Voltage Conference, PMHVC
A seven cavity LTD system has been assembled and tested in a voltage adder configuration capable of producing approximately 1-MV into a 7-Ω, critically damped load. Individual cavities have been tested with a resistive load. The seven cavity adder has been tested with a large area electron beam diode. The output pulse when tested into a resistive load is that of an RLC circuit. When tested with a dynamic load impedance, the output voltages of the cavities have an added oscillation. The oscillation affects the output pulse shape but is not harmful to the cavity components. © 2008 IEEE.
Pulsed power driven flash x-ray radiography is a valuable diagnostic for subcritical experiments at the Nevada Test Site. The existing dual-axis Cygnus system produces images using a 2.25 MV electron beam diode to produce intense x-rays from a small source. Future hydrodynamic experiments will likely use objects with higher areal mass, requiring increased x-ray dose and higher voltages while maintaining small source spot size. A linear transformer driver (LTD) is a compact pulsed power technology with applications ranging from pulsed power flash x-ray radiography to high current Z-pinch accelerators. This report describes the design of a 7-MV dual-axis system that occupies the same lab space as the Cygnus accelerators. The work builds on a design proposed in a previous report [1]. This new design provides increased diode voltage from a lower impedance accelerator to improve coupling to low impedance diodes such as the self magnetic pinch (SMP) diode. The design also improves the predicted reliability by operating at a lower charge voltage and removing components that have proven vulnerable to failure. Simulations of the new design and experimental results of the 1-MV prototype are presented.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Special Topics-Accelerators and Beams
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A 1 MV linear transformer driver (LTD), capable of driving a radiographic diode load, has been built and tested. A circuit model of this accelerator has been developed using the BERTHA circuit simulation code. Simulations are compared to data from power-flow experiments utilizing a large area electron-beam diode load. Results show that the simulation model performs well in modeling the baseline operation of the accelerator. In addition, the circuit model has been used to predict several possible fault modes. Simulations of switch prefires, main capacitor failure, vacuum insulator flashover, and core saturation have been used to estimate the probability of inducing further failures and the impact on the load voltage and current.
A 1 MV linear transformer driver (LTD) is being tested with a large area e-beam diode load at Sandia National Laboratories (SNL). The experiments will be utilized to determine the repeatability of the output pulse and the reliability of the components. The 1 MV accelerator is being used to determine the feasibility of designing a 6 MV LTD for radiography experiments. The peak voltage, risetime, and pulse width as well as the cavity timing jitter are analyzed to determine the repeatability of the output pulse.
Abstract not provided.