Publications

20 Results
Skip to search filters

Bone response to 3-D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2

Proposed for publication in the Journal of Biomedical Materials Research.

Cesarano, Joseph C.; Dellinger, Jennifer D.

The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 {micro}m{sup 2} in quadrant 1, 250 x 500 {micro}m{sup 2} in quadrants 2 and 4, and 500 x 500 {micro}m{sup 2} in quadrant 3. In the second group, HA rods (400 {micro}m in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 {micro}m{sup 2} in quadrant 1, 500 x 750 {micro}m{sup 2} in quadrants 2 and 4, and 750 x 750 {micro}m{sup 2} in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures.

More Details

Monolithic supports with unique geometries and enhanced mass transfer

Ferrizz, Robert F.; Ferrizz, Robert F.; Stuecker, John N.; Cesarano, Joseph C.

The catalytic combustion of natural gas has been the topic of much research over the past decade. Interest in this technology results from a desire to decrease or eliminate the emissions of harmful nitrogen oxides (NOX) from gas turbine power plants. A low-pressure drop catalyst support, such as a ceramic monolith, is ideal for this high-temperature, high-flow application. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. 'Robocasting' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low pressure drops. This report details the mass transfer effects for novel 3-dimensional robocast monoliths, traditional honeycomb-type monoliths, and ceramic foams. The mass transfer limit is experimentally determined using the probe reaction of CO oxidation over a Pt / {gamma}-Al{sub 2}O{sub 3} catalyst, and the pressure drop is measured for each monolith sample. Conversion versus temperature data is analyzed quantitatively using well-known dimensionless mass transfer parameters. The results show that, relative to the honeycomb monolith support, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application.

More Details

Biocompatible self-assembly of nano-materials for Bio-MEMS and insect reconnaissance

Brinker, C.J.; Sinclair, Michael B.; Timlin, Jerilyn A.; Cesarano, Joseph C.; Brinker, C.J.; Baca, Helen K.; Flemming, Jeb H.; Dunphy, Darren R.; Brozik, Susan M.; Werner-Washburne, Margaret

This report summarizes the development of new biocompatible self-assembly procedures enabling the immobilization of genetically engineered cells in a compact, self-sustaining, remotely addressable sensor platform. We used evaporation induced self-assembly (EISA) to immobilize cells within periodic silica nanostructures, characterized by unimodal pore sizes and pore connectivity, that can be patterned using ink-jet printing or photo patterning. We constructed cell lines for the expression of fluorescent proteins and induced reporter protein expression in immobilized cells. We investigated the role of the abiotic/biotic interface during cell-mediated self-assembly of synthetic materials.

More Details

Colloidal processing of chemically prepared zinc oxide varistors. Part 1, milling and dispersion of powder

Proposed for publication in the Journal of Materials Research.

Bell, Nelson S.; Bell, Nelson S.; Cesarano, Joseph C.; Voigt, James A.; Lockwood, Steven J.; Dimos, Duane B.

Chemically prepared zinc oxide powders are fabricated for the production of high aspect ratio varistor components. Colloidal processing was performed to reduce agglomerates to primary particles, form a high solids loadingslurry, and prevent dopant migration. The milled and dispersed powder exhibited a viscoelastic to elastic behavioral transition at a volume loading of 43-46%. The origin of this transition was studied using acoustic spectroscopy, zeta potential measurements, and oscillatory rheology. The phenomenon occurs due to a volume fraction solids dependent reduction in the zeta potential of the solid phase. It is postulated to result from divalent ion binding within the polyelectrolyte dispersant chain and was mitigated using a polyethylene glycol plasticizing additive. This allowed for increased solids loading in the slurry and a green body fabrication study to be presented in our companion paper.

More Details

Materials for freeform fabrication of GHz tunable dielectric photonic crystals

Proposed for publication in the Materials Research Society Conference Proceedings held June 3, 2003.

Clem, Paul G.; Clem, Paul G.; Niehaus, Michael K.; Cesarano, Joseph C.; Lin, Shawn-Yu L.

Photonic crystals are of interest for GHz transmission applications, including rapid switching, GHz filters, and phased-array technology. 3D fabrication by Robocasting enables moldless printing of high solid loading slurries into structures such as the ''woodpile'' structures used to fabricate dielectric photonic band gap crystals. In this work, tunable dielectric materials were developed and printed into woodpile structures via solid freeform fabrication (SFF) toward demonstration of tunable photonic crystals. Barium strontium titanate ceramics possess interesting electrical properties including high permittivity, low loss, and high tunability. This paper discusses the processing route and dielectric characterization of (BaxSr1-XTiO3):MgO ceramic composites, toward fabrication of tunable dielectric photonic band gap crystals.

More Details

Robocasting and cofiring of functionally graded Si3N4-W materials

Ceramic Engineering and Science Proceedings

He, Guoping; Hirschfeld, Deidre A.; Cesarano, Joseph C.; Stuecker, John N.

Functionally graded materials consisting of two different materials with graded interlayers may be used in selected advanced engine applications. For example, Si3N4 ceramic components may be joined to metallic alloys using a W buffer layer. This study describes the design and fabrication of an intermediate layer with graded composition using robocasting, a novel solid free form fabrication technique. The robocast graded Si3N4-W samples were cofired at 1720°C for 1 h in an N2 atmosphere. Sintered density, shrinkage and other properties were measured. The interfacial microstructure and the atomic element distributions in the cross-sections were evaluated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). A densified graded structure without pores was obtained.

More Details

Filling Source Feedthrus with Alumina/Molybdenum CND50 Cermet: Experimental, Theoretical, and Computational Approaches

Stuecker, John N.; Cesarano, Joseph C.; Shollenberger, K.A.; Roach, R.A.; Torczynski, J.R.; Thomas, Edward V.; Van Ornum, David J.

This report is a summary of the work completed in FY00 for science-based characterization of the processes used to fabricate cermet vias in source feedthrus. In particular, studies were completed to characterize the CND50 cermet slurry, characterize solvent imbibition, and identify critical via filling variables. These three areas of interest are important to several processes pertaining to the production of neutron generator tubes. Rheological characterization of CND50 slurry prepared with 94ND2 and Sandi94 primary powders were also compared. The 94ND2 powder was formerly produced at the GE Pinellas Plant and the Sandi94 is the new replacement powder produced at CeramTec. Processing variables that may effect the via-filling process were also studied and include: the effect of solids loading in the CND50 slurry; the effect of milling time; and the effect of Nuosperse (a slurry ''conditioner''). Imbibition characterization included a combination of experimental, theoretical, and computational strategies to determine solvent migration though complex shapes, specifically vias in the source feedthru component. Critical factors were determined using a controlled set of experiments designed to identify those variables that influence the occurrence of defects within the cermet filled via. These efforts were pursued to increase part production reliability, understand selected fundamental issues that impact the production of slurry-filled parts, and validate the ability of the computational fluid dynamics code, GOMA, to simulate these processes. Suggestions are made for improving the slurry filling of source feedthru vias.

More Details

Processing of Silicon Nitride Ceramics from Concentrated Aqueous Suspensions by Robocasting

Journal of the American Ceramic Society

Cesarano, Joseph C.; Stuecker, John N.; Cesarano, Joseph C.

The optimization of concentrated AlliedSignal GS-44 silicon nitride aqueous slurries for robocasting was investigated. The dispersion mechanisms of GS-44 Si{sub 3}N{sub 4} aqueous suspensions with and without polyacrylate were analyzed. The zero point of charge (ZPC) was at about pH 6. Well-dispersed GS-44 suspensions were obtained in the pH range from 7 to 11 by the addition of Darvan 821A. The influence of pH, amount of Darvan 821A and solids loading on the theological behavior of GS-44 aqueous suspensions was determined. A coagulant, aluminum nitrate, was used to control the yield stress and shear thinning behavior of highly loaded Si{sub 3}N{sub 4} slurries. Homogeneous and stable suspensions of 52 vol% GS-44 Si{sub 3}N{sub 4} were robocast successfully at pH 7.8 to pH 8.5. The sintering process, mechanical properties and microstructural characteristics of robocast GS-44 bars were determined.

More Details

Robocast Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} Ceramic Monoliths and Composites

Journal of American Ceramic Society

Tuttle, Bruce T.; Smay, James E.; Cesarano, Joseph C.; Voigt, James A.; Scofield, Timothy W.; Olson, Walter R.

Robocasting, a computer controlled slurry deposition technique, was used to fabricate ceramic monoliths and composites of chemically prepared Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) ceramics. Densities and electrical properties of the robocast samples were equivalent to those obtained for cold isostatically pressed (CIP) parts formed at 200 MPa. Robocast composites consisting of alternate layers of the following sintered densities: (93.9%--96.1%--93.9%), were fabricated using different levels of organic pore former additions. Modification from a single to a multiple material deposition robocaster was essential to the fabrication of composites that could withstand repeated cycles of saturated polarization switching under 30 kV/cm fields. Further, these composites withstood 500 MPa hydrostatic pressure induced poled ferroelectric (FE) to antiferroelectric (AFE) phase transformation during which strain differences on the order of 0.8% occurred between composite elements.

More Details

Rheology Control of Highly Concentrated Mullite Suspensions with Polyelectrolyte for Robocasting

Journal of the American Ceramics Society

Stuecker, John N.; Cesarano, Joseph C.

Highly concentrated, aqueous mullite slurries were characterized and stabilized at solids concentrations as high as 60 vol% using less than 2 vol% of an organic polyelectrolyte dispersant. The maximum slurry concentration (60 vol%) is within 3 vol% of the maximum consolidated density of the slurry. The slurries were subsequently cast into parts by a solid freeform fabrication technique termed robocasting and characterized. Sedimentation analysis and viscometry provided the means of slurry characterization, while knowledge of polyelectrolyte and interparticle forces was used to interpret the sedimentation and viscometry data. Through proper control of slurry conditions, pseudoplastic mullite slurries were fabricated for use in the robocasting process. The slurries were robocast at 52 vol% solids and subsequently yielded a green density of 55 vol%. Fired densities of the robocasted slurries were high, with mullite >96% dense at 1,650 C.

More Details

Processing and mechanical properties of silicon nitride formed by robocasting aqueous slurries

Cesarano, Joseph C.; Cesarano, Joseph C.

Robocasting is a new freeform fabrication technique for dense ceramics. It uses robotics to control deposition of ceramic slurries through an orifice. The optimization of concentrated aqueous Si{sub 3}N{sub 4} slurry properties to achieve high green density robocast bodies and subsequent high sintered densities was investigated. The effects of pH, electrolyte, additives and solids loading on the dispersion and rheological properties of Si{sub 3}N{sub 4} slurries were determined. The mechanical behavior of sintered robocast bars was determined and compared to conventionally produced silicon nitride ceramics.

More Details
20 Results
20 Results