Sandia’s Z Pulsed Power Facility is able to dynamically compress matter to extreme states with exceptional uniformity, duration, and size, which are ideal for investigating fundamental material properties of high energy density conditions. X-ray diffraction (XRD) is a key atomic scale probe since it provides direct observation of the compression and strain of the crystal lattice and is used to detect, identify, and quantify phase transitions. Because of the destructive nature of Z-Dynamic Material Property (DMP) experiments and low signal vs background emission levels of XRD, it is very challenging to detect a diffraction signal close to the Z-DMP load and to recover the data. We have developed a new Spherical Crystal Diffraction Imager (SCDI) diagnostic to relay and image the diffracted x-ray pattern away from the load debris field. The SCDI diagnostic utilizes the Z-Beamlet laser to generate 6.2-keV Mn–Heα x rays to probe a shock-compressed material on the Z-DMP load. Finally, a spherically bent crystal composed of highly oriented pyrolytic graphite is used to collect and focus the diffracted x rays into a 1-in. thick tungsten housing, where an image plate is used to record the data.
Sandia's Z Pulsed Power Facility is able to dynamically compress matter to extreme states with exceptional uniformity, duration, and size, which are ideal for investigations of fundamental material properties of high energy density conditions. X-ray diffraction (XRD) is a key atomic scale probe since it provides direct observation of the compression and strain of the crystal lattice, and is used to detect, identify, and quantify phase transitions. Because of the destructive nature of Z-Dynamic Materials Properties (DMP) experiments and low signal vs background emission levels of XRD, it is very challenging to detect the XRD pattern close to the Z-DMP load and to recover the data. We developed a new Spherical Crystal Diffraction Imager (SCDI) diagnostic to relay and image the diffracted x-ray pattern away from the load debris field. The SCDI diagnostic utilizes the Z-Beamlet laser to generate 6.2-keV Mn-He c , x-rays to probe a shock-compressed sample on the Z-DMP load. A spherically bent crystal composed of highly oriented pyrolytic graphite is used to collect and focus the diffracted x-rays into a 1-inch thick tungsten housing, where an image plate is used to record the data. We performed experiments to implement the SCDI diagnostic on Z to measure the XRD pattern of shock compressed beryllium samples at pressures of 1.8-2.2 Mbar.
Distributed Phase Plates (DPP) are used in laser experiments to create homogenous intensity distributions of a distinct shape at the location of the laser focus. Such focal shaping helps with controlling the intensity that is impeding on the target. To efficiently use a DPP, the exact size and shape of the focal distribution is of critical importance. We recorded direct images of the focal distribution with ideal continuous-wave (CW) alignment lasers and with laser pulses delivered by the Z-Beamlet facilty. As necessary to protect the imaging sensors, laser pulses will not be performed by full system shots, but rather with limited energy on so-called %60rod-shots', in which Z-Beamlet's main amplifiers do not engage. The images are subsequently analyzed for characteristic radii and shape. All characterizations were performed at the Pecos target area of Sandia with a lens of 3.2 m focal length.