We report pulsed dielectric barrier discharges (DBD) in He–H2O and He–H2O–O2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H2O2 ). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H2O2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H2O2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H2O2 . OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H2O2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O2 in the He admixture decreases the OH densities and increases the H2O2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H2O2 mole fractions, except for the H2O2 in the He–H2O–O2 mixture which is relatively insensitive to the additional pulses.
The methyl radical plays a central role in plasma-assisted hydrocarbon chemistry but is challenging to detect due to its high reactivity and strongly pre-dissociative electronically excited states. In this work, we report the development of a photo-fragmentation laser-induced fluorescence (PF-LIF) diagnostic for quantitative 2D imaging of methyl profiles in a plasma. This technique provides temporally and spatially resolved measurements of local methyl distributions, including in near-surface regions that are important for plasma-surface interactions such as plasma-assisted catalysis. The technique relies on photo-dissociation of methyl by the fifth harmonic of a Nd:YAG laser at 212.8 nm to produce CH fragments. These photofragments are then detected with LIF imaging by exciting a transition in the B-X(0, 0) band of CH with a second laser at 390 nm. Fluorescence from the overlapping A-X(0, 0), A-X(1, 1), and B-X(0, 1) bands of CH is detected near 430 nm with the A-state populated by collisional B-A electronic energy transfer. This non-resonant detection scheme enables interrogation close to a surface. The PF-LIF diagnostic is calibrated by producing a known amount of methyl through photo-dissociation of acetone vapor in a calibration gas mixture. We demonstrate PF-LIF imaging of methyl production in methane-containing nanosecond pulsed plasmas impinging on dielectric surfaces. Absolute calibration of the diagnostic is demonstrated in a diffuse, plane-to-plane discharge. Measured profiles show a relatively uniform distribution of up to 30 ppm of methyl. Relative methyl measurements in a filamentary plane-to-plane discharge and a plasma jet reveal highly localized intense production of methyl. The utility of the PF-LIF technique is further demonstrated by combining methyl measurements with formaldehyde LIF imaging to capture spatiotemporal correlations between methyl and formaldehyde, which is an important intermediate species in plasma-assisted oxidative coupling of methane.
In this LDRD project, we developed a versatile capability for high-resolution measurements of electron scattering processes in gas-phase molecules, such as ionization, dissociation, and electron attachment/detachment. This apparatus is designed to advance fundamental understanding of these processes and to inform predictions of plasmas associated with applications such as plasma-assisted combustion, neutron generation, re-entry vehicles, and arcing that are critical to national security. We use innovative coupling of electron-generation and electron-imaging techniques that leverages Sandia’s expertise in ion/electron imaging methods. Velocity map imaging provides a measure of the kinetic energies of electrons or ion products from electron scattering in an atomic or molecular beam. We designed, constructed, and tested the apparatus. Tests include dissociative electron attachment to O2 and SO2, as well as a new method for studying laser-initiated plasmas. This capability sets the stage for new studies in dynamics of electron scattering processes, including scattering from excited-state atoms and molecules.
This work describes the diagnostic implementation and image processing methods to quantitatively measure diesel spray mixing injected into a high-pressure, high-temperature environment. We used a high-repetition-rate pulse-burst laser developed in-house, a high-speed CMOS camera, and optimized the optical configuration to capture Rayleigh scattering images of the vaporized fuel jets inside a constant volume chamber. The experimental installation was modified to reduce reflections and flare levels to maximize the images’ signal-to-noise ratios by anti-reflection coatings on windows and surfaces, as well as series of optical baffles. Because of the specificities of the high-speed system, several image processing techniques had to be developed and implemented to provide quantitative fuel concentration measurements. These methods involve various correction procedures such as camera linearity, laser intensity fluctuation, dynamic background flare, as well as beam-steering effects. Image inpainting was also applied to correct the Rayleigh scattering signal from large scatterers (e.g. particulates). The experiments demonstrate that applying planar laser Rayleigh scattering at high repetition rate to quantitatively resolve the mixing of fuel and ambient gases in diesel jets is challenging, but possible. The thorough analysis of the experimental uncertainty and comparisons to past data prove that such measurements can be accurate, whilst providing valuable information about the mixing processes of high-pressure diesel jets.
Many important chemically reacting systems are inherently multi-dimensional with spatial and temporal variations in the thermochemical state, which can be strongly coupled to interactions with transport processes. Fundamental insights into these systems require multi-dimensional measurements of the thermochemical state as well as fluid dynamics quantities. Laser-based imaging diagnostics provide spatially and temporally resolved measurements that help address this need. The state of the art in imaging diagnostics is continually progressing with the goal of attaining simultaneous multi-parameter measurements that capture transient processes, particularly those that lead to stochastic events, such as localized extinction in turbulent combustion. Development efforts in imaging diagnostics benefit from advances in laser and detector technology. This article provides a perspective on the progression of increasing dimensionality of laser-based imaging diagnostics and highlights the evolution from single-point measurements to 1D and 2D multi-parameter imaging and 3D high-speed imaging. This evolution is demonstrated using highlights of laser-based imaging techniques in combustion science research as an exemplar of a complex multi-dimensional chemically reacting system with chemistry-transport coupling. Imaging diagnostics impact basic research in other chemically reacting systems as well, such as measurements of near-surface gases in heterogeneous catalysis. The expanding dimensionality of imaging diagnostics leads to larger and more complex datasets that require increasingly demanding approaches to data analysis and provide opportunities for increased collaboration between experimental and computational researchers in tackling these challenges.
Zhou, Bo; Li, Tao; Frank, Jonathan H.; Dreizler, Andreas; Böhm, Benjamin
High-speed, three-dimensional (3D) scalar-velocity field measurements were demonstrated in a lifted partially-premixed dimethyl-ether/air jet flame using simultaneous laser-induced fluorescence (LIF) of formaldehyde and tomographic particle image velocimetry (TPIV). The 3D LIF measurements were conducted by raster scanning the laser beam from a 100 kHz pulse-burst laser across the probe volume using an acousto-optic deflector. The volumetric reconstruction of the LIF signal from ten parallel planes provides quasi-instantaneous 3D LIF measurements that are synchronized with 10 kHz TPIV measurements. The temporally resolved formaldehyde-LIF and velocity field data were employed to analyze Lagrangian particle trajectories and displacement speeds at the base of the lifted flame. The particle trajectories revealed flow structures that are difficult to observe in an Eulerian reference frame. Positive and negative displacement speeds were observed at the formaldehyde-LIF surfaces at the inner and outer regions of the jet flame with a maximum displacement speed of approximately eight times the laminar flame speed of a stoichiometric dimethyl-ether/air mixture.
The effects of heat release on interactions between vorticity (ω) and strain rate (s) in turbulent premixed CH4/O2/N2 counterflow flames are investigated using simultaneous OH laser-induced fluorescence (LIF) and tomographic particle image velocimetry (TPIV) measurements. A comparison between the flames and a corresponding turbulent non-reacting variable density N2-vs-products counterflow reveals the impact of heat release on vorticity-strain rate alignment statistics. Vorticity and strain rate statistics in the flames and non-reacting flow are conditioned on distance from the local flame front and gas mixing layer interface (GMLI) contours, respectively. The magnitude, alignment, and spatial distribution of the vorticity and principal strain rates (s1, s2, s3) are rather different when heat release is present. Density variations without heat release enhance the ω-s2 alignment while significantly reducing the ω-s3 alignment and modestly reducing the ω-s1 alignment. In contrast, heat release at the flame front further reduces the ω-s1 alignment but increases the ω-s3 alignment and suppresses the preferential ω-s2 alignment. Furthermore, increasing turbulence diminishes the effect of heat release on this preferential alignment. In regions with the largest vorticities, both the reacting and non-reacting counterflows show an increase in the probability of ω-s2 alignment. All counterflow cases have a net positive vortex-stretching contribution to the enstrophy production with a peak production rate at the flame front or GMLI, but the peak values depend on the density variation, heat release, and turbulence level. Elucidation of the complex interplay between these factors contributes to the understanding of the dynamics of turbulence-flame interactions.
Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.
Abstract: Beam steering by index-of-refraction gradients poses a significant challenge for laser-based imaging measurements in turbulent reacting and non-reacting flows, particularly at elevated pressures. High fidelity imaging and quantitative data interpretation in turbulent flows can be considerably impeded by artefacts generated from beam steering. A wavelet-based filtering scheme has been developed to recover the underlying turbulent flow structures from imaging measurements containing severe beam-steering artefacts. This analysis technique is equally applicable to imaging measurements in reacting and non-reacting flows. It is demonstrated using mixture fraction measurements in a transient turbulent jet flow at 8 bar using Rayleigh scattering imaging at a repetition rate of 100 kHz. The corrected images reveal the temporal evolution of flow structures with negligible residual beam-steering artefacts. Tests of the sensitivity of the wavelet-based filtering scheme to noise and spatial resolution indicate that it is a robust analytic tool for correcting severe beam-steering artefacts commonly encountered in laser-based imaging measurements at elevated pressures. Graphic abstract: [Figure not available: see fulltext.].
Frank, Jonathan H.; Chandler, David W.; Fournier, Martin P.; Jaska, Mark J.
This project explored a new capability for studying collisions of electrons and molecules with unprecedented accuracy by combining high electron-energy resolution with velocity mapped imaging of electrons. Low-energy electrons were produced within a supersonic beam by photoionization of metastable krypton using a dye laser to generate electrons with tunable kinetic energy and a narrow energy spread. A new configuration for electron imaging optics was developed to enable scattering of electrons in a zero-field environment with subsequent rapidly pulsed velocity mapped imaging of the electrons. Development of this new capability will significantly enhance DOE/NNSA's ability to perform basic research on processes relevant to plasmas in atmospheric re-entry and neutron generation for weapons systems and provide fundamental understanding of electron-driven chemistry important to solar energy conversion.
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel-air mixing. However, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtained using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. The effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.
The effects of combustion on the strain rate field in turbulent premixed CH4/air Bunsen flames were investigated using simultaneous tomographic PIV and OH LIF measurements. Measurements were compared in three lean-to-stoichiometric flames that have different amounts of heat release and Damköhler numbers greater than unity. The extensive strain rate preferentially aligned with the flame normal in the reaction zone. The strength of this alignment increased with increasing heat release leading to highly extensive flame-normal strain rate. These effects are associated with the gas expansion normal to the flame surface which is largest for the stoichiometric flame. In the preheat zone the compressive strain rate exhibited a tendency to align with the flame normal while away from the flame front the flame the strain rate alignment was arbitrary in both the reactants and products. The flame-tangential strain rate was on average positive across the flame front implying that the turbulent strain rate field contributes to the enhancement of scalar gradients as in passive scalar turbulence.
We present a series of benchmark flames consisting of six partially-premixed piloted dimethyl ether (DME)/air jet flames. These flames provide an opportunity to understand turbulence-flame interactions for oxygenated fuels and to develop predictive models for these interactions using a canonical burner geometry. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. The flames are stabilized on a piloted jet burner similar to that of the partially-premixed methane/air jet flames that have been studied extensively within the context of the TNF Workshop. This series of six jet flames spans jet exit Reynolds numbers, ReD, from 29,300 to 73,300 and stoichiometric mixture fractions, ξst, from 0.35 to 0.60. Flame conditions range from very low probability of localized extinction to a high probability of localized extinction and subsequent re-ignition. Measurements in the flames are compared at downstream locations from 5 to 25 diameters above the nozzle exit. Mean and fluctuating velocity components are measured using stereo particle image velocimetry (SPIV). Simultaneous laser-induced fluorescence (LIF) imaging of OH and CH2O provides insights into the distribution of these intermediate species in partially-premixed DME/air flames. OH LIF imaging is also combined with SPIV to investigate the strain rate field across the reaction zone.
Stabilization methods of turbulent flames often involve mixing of reactants with hot products of combustion. The stabilizing effect of combustion product enthalpy has been long recognized, but the role played by the chemical composition of the product gases is typically overlooked. We employ a counterflow system to pinpoint the effects of the combustion product stoichiometry on the structure of turbulent premixed flames under conditions of both stable burning and local extinction. To that end, a turbulent jet of lean-to-rich, CH4/O2/N2-premixed reactants at a turbulent Reynolds number of 1050 was opposed to a stream of hot products of combustion that were generated in a preburner. While the combustion product stream temperature was kept constant, its stoichiometry was varied independently from that of the reactant stream, leading to reactant-to-product stratification of relevance to practical combustion systems. The detailed structure of the turbulent flame front was analyzed in two series of experiments using laser-induced fluorescence (LIF): joint CH2O LIF and OH LIF measurements and joint CO LIF and OH LIF measurements. Results revealed that a decrease in local CH2O+OH and CO+OH reaction rates coincide with the depletion of OH radicals in the vicinity of the combustion product stream. These critical combustion reaction rates were more readily quenched in the presence of products of combustion from a stoichiometric flame, whereas they were favored by lean combustion products. As a result, stoichiometric combustion products contributed to a greater occurrence of local extinction. Furthermore, they limited the capacity of premixed reactants to ignite and of the turbulent premixed flames to stabilize. In contrast, lean and rich combustion products facilitated flame ignition and stability and reduced the rate of local extinction. The influence of the combustion product stream on the turbulent flame front was limited to a zone of approximately two millimeters from the gas mixing layer interface (GMLI) of the product stream. Flame fronts that were separated from the GMLI by larger distances were unaffected by the product stream stoichiometry.
In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1 - s2 plane and orthogonal to s3.
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.
Coriton, Bruno R.; Zendehdel, Masoomeh; Ukai, Satoshi; Kronenburg, Andreas; Stein, Oliver T.; Im, Seong K.; Gamba, Mirko; Frank, Jonathan H.
Turbulent dimethyl ether (DME) jet flames provide a canonical flame geometry for studying turbulence-flame interactions in oxygenated fuels and for developing predictive models of these interactions. The development of accurate models for DME/air flames would establish a foundation for studies of more complex oxygenated fuels. We present a joint experimental and computational investigation of the velocity field and OH and CH2O distributions in a piloted, partially-premixed turbulent DME/air jet flame with a jet exit Reynolds number, ReD, of 29,300. The turbulent DME/air flame is analogous to the well-studied, partially-premixed methane/air jet flame, Sandia Flame D, with identical stoichiometric mixture fraction, ξst = 0.35, and bulk jet exit velocity, Vbulk = 45.9 m/s. Measurements include particle image velocimetry (PIV) and simultaneous CH2O and OH laser-induced fluorescence (LIF) imaging. Simulations are performed using a large eddy simulation combined with conditional moment closure (LES-CMC) on an intermediate size grid of 1.3 million cells. Overall, the downstream evolution of the mean and RMS profiles of velocity, OH, and CH2O are well predicted, with the largest discrepancies occurring for CH2O at x/D = 20-25. LES-CMC simulations employing two different chemical reaction mechanisms (Kaiser et al., 2000 [20] and Zhao et al., 2008 [21]) show approximately a factor of two difference in the peak CH2O mole fractions, whereas OH mole fractions are in good agreement between the two mechanisms. The single-shot LIF measurements of OH and CH2O show a wide range of separation distances between the spatial distributions of these intermediate species with gaps on the order of millimeters. The intermittency in the overlap between these species indicates that the consumption rates of formaldehyde by OH in the turbulent DME/air jet flame may be highly intermittent with significant departures from flamelet models.
The effects of combustion on the strain rate field in turbulent jets were studied using 10 kHz tomographic particle image velocimetry (TPIV). Measurements were performed in three turbulent jets: a well-studied, piloted partially-premixed methane/air jet flame, Sandia flame C, with low probability of localized extinction; a second piloted jet flame, analogous to flame C but with a reduced pilot flow rate and a high probability of localized extinction; and a non-reacting air jet. Since the jet exit Reynolds number of approximately 13000 was nearly identical in the three jets, differences in the strain rate fields were attributed to the effects of combustion. Spatiotemporal characteristics of the strain rate field were analyzed. Overall, the strain rate norm was larger in the flames than in the non-reacting jet with the most stable flame having the largest values. In all three jets, the compressive strain rate was on average the largest of the three principal strain rates. At high strain rates, the ratios of the compressive and extensive strain rate to the intermediate strain rate were similar to those found in isotropic incompressible turbulent flows. The three-dimensional velocity measurements were used to analyze the spatial distribution of strain rate clusters, defined as singly-connected groups of voxels where the strain rate magnitude exceeded a threshold value. The presence of a stable flame significantly attenuated the number of clusters of intermediate strain rate. Strain rate bursts, corresponding to sudden increases in the number of clusters, were identified in the three jets. Bursts in the non-reacting jet and the unstable flame contained up to twice as many clusters as in the stable flame. The temporal intermittency of intense strain rate clusters was analyzed using the time-series measurements. Clusters with strain rates greater than five times the standard deviation of the strain rate norm were highly intermittent.
The University of Michigan and Sandia National Laboratories collaborated on the initial development of a compact single-camera approach for simultaneously measuring 3-D gasphase velocity and temperature fields at high frame rates. A compact diagnostic tool is desired to enable investigations of flows with limited optical access, such as near-wall flows in an internal combustion engine. These in-cylinder flows play a crucial role in improving engine performance. Thermographic phosphors were proposed as flow and temperature tracers to extend the capabilities of a novel, compact 3D velocimetry diagnostic to include high-speed thermometry. Ratiometric measurements were performed using two spectral bands of laser-induced phosphorescence emission from BaMg2Al10O17:Eu (BAM) phosphors in a heated air flow to determine the optimal optical configuration for accurate temperature measurements. The originally planned multi-year research project ended prematurely after the first year due to the Sandia-sponsored student leaving the research group at the University of Michigan.