Publications

26 Results
Skip to search filters

Resistive memory device requirements for a neural algorithm accelerator

Proceedings of the International Joint Conference on Neural Networks

Agarwal, Sapan A.; Plimpton, Steven J.; Hughart, David R.; Hsia, Alexander W.; Richter, Isaac; Cox, Jonathan A.; James, Conrad D.; Marinella, Matthew J.

Resistive memories enable dramatic energy reductions for neural algorithms. We propose a general purpose neural architecture that can accelerate many different algorithms and determine the device properties that will be needed to run backpropagation on the neural architecture. To maintain high accuracy, the read noise standard deviation should be less than 5% of the weight range. The write noise standard deviation should be less than 0.4% of the weight range and up to 300% of a characteristic update (for the datasets tested). Asymmetric nonlinearities in the change in conductance vs pulse cause weight decay and significantly reduce the accuracy, while moderate symmetric nonlinearities do not have an effect. In order to allow for parallel reads and writes the write current should be less than 100 nA as well.

More Details

Silicon photonics platform for national security applications

IEEE Aerospace Conference Proceedings

Lentine, Anthony L.; DeRose, Christopher T.; Davids, Paul D.; Martinez, Nicolas J.D.; Zortman, William A.; Cox, Jonathan A.; Jones, Adam; Trotter, Douglas C.; Pomerene, Andrew P.; Starbuck, Andrew L.; Savignon, Daniel J.; Bauer, Todd B.; Wiwi, Michael W.; Chu, Patrick B.

We review Sandia's silicon photonics platform for national security applications. Silicon photonics offers the potential for extensive size, weight, power, and cost (SWaP-c) reductions compared to existing III-V or purely electronics circuits. Unlike most silicon photonics foundries in the US and internationally, our silicon photonics is manufactured in a trusted environment at our Microsystems and Engineering Sciences Application (MESA) facility. The Sandia fabrication facility is certified as a trusted foundry and can therefore produce devices and circuits intended for military applications. We will describe a variety of silicon photonics devices and subsystems, including both monolithic and heterogeneous integration of silicon photonics with electronics, that can enable future complex functionality in aerospace systems, principally focusing on communications technology in optical interconnects and optical networking.

More Details

Ultra-long duration time-resolved spectroscopy with enhanced temporal resolution of high-Q nano-optomechanical modes using interleaved asynchronous optical sampling (I-ASOPS)

Conference on Lasers and Electro-Optics Europe - Technical Digest

Siddiqui, Aleem; Jarecki, Robert L.; Starbuck, Andrew L.; Cox, Jonathan A.

Transient responses of high-Q nano-optomechanical modes are characterized with Interleaved-ASOPS, where pump-induced transients are interrogated with multiple probe pulses. Temporal resolution increases linearly with probe-pulse-number beyond conventional ASOPS, achieving sub-ps resolution over μs durations.

More Details
26 Results
26 Results