Sierra Thermal Fluids use of Trilinos and FY21 GPU porting milestone recap
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Fluids Engineering, Transactions of the ASME
Models and experiments are developed to investigate how a small amount of gas can cause large rectified motion of a piston in a vibrated liquid-filled housing when piston drag depends on piston position so that damping is nonlinear even for viscous flow. Two bellows serve as surrogates for the upper and lower gas regions maintained by Bjerknes forces. Without the bellows, piston motion is highly damped. With the bellows, the piston, the liquid, and the two bellows move together so that almost no liquid is forced through the gaps between the piston and the housing. This Couette mode has low damping and a strong resonance: the piston and the liquid vibrate against the spring formed by the two bellows (like the pneumatic spring formed by the gas regions). Near this resonance, the piston motion becomes large, and the nonlinear damping produces a large rectified force that pushes the piston downward against its spring suspension. A recently developed model based on quasi-steady Stokes flow is applied to this system. A drift model is developed from the full model and used to determine the equilibrium piston position as a function of vibration amplitude and frequency. Corresponding experiments are performed for two different systems. In the two-spring system, the piston is suspended against gravity between upper and lower springs. In the spring-stop system, the piston is pushed up against a stop by a lower spring. Model and experimental results agree closely for both systems and for different bellows properties.
Physics of Fluids
Transport of solid particles in blood flow exhibits qualitative differences in the transport mechanism when the particle varies from nanoscale to microscale size comparable to the red blood cell (RBC). The effect of microscale particle margination has been investigated by several groups. Also, the transport of nanoscale particles (NPs) in blood has received considerable attention in the past. This study attempts to bridge the gap by quantitatively showing how the transport mechanism varies with particle size from nano-to-microscale. Using a three-dimensional (3D) multiscale method, the dispersion of particles in microscale tubular flows is investigated for various hematocrits, vessel diameters, and particle sizes. NPs exhibit a nonuniform, smoothly dispersed distribution across the tube radius due to severe Brownian motion. The near-wall concentration of NPs can be moderately enhanced by increasing hematocrit and confinement. Moreover, there exists a critical particle size (∼1 μm) that leads to excessive retention of particles in the cell-free region near the wall, i.e., margination. Above this threshold, the margination propensity increases with the particle size. The dominance of RBC-enhanced shear-induced diffusivity (RESID) over Brownian diffusivity (BD) results in 10 times higher radial diffusion rates in the RBC-laden region compared to that in the cell-free layer, correlated with the high margination propensity of microscale particles. This work captures the particle size-dependent transition from Brownian-motion dominant dispersion to margination using a unified 3D multiscale computational approach and highlights the linkage between the radial distribution of RESID and the margination of particles in confined blood flows.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Fluid Mechanics
Using a multiscale blood flow solver, the complete diffusion tensor of nanoparticles (NPs) in sheared cellular blood flow is calculated over a wide range of shear rate and haematocrit. In the short-time regime, NPs exhibit anomalous dispersive behaviors under high shear and high haematocrit due to the transient elongation and alignment of the red blood cells (RBCs). In the long-time regime, the NP diffusion tensor features high anisotropy. Particularly, there exists a critical shear rate () around which the shear-rate dependence of the diffusivity tensor changes from linear to nonlinear scale. Above the critical shear rate, the cross-stream diffusivity terms vary sublinearly with shear rate, while the longitudinal term varies superlinearly. The dependence on haematocrit is linear in general except at high shear rates, where a sublinear scale is found for the vorticity term and a quadratic scale for the longitudinal term. Through analysis of the suspension microstructure and numerical experiments, the nonlinear haemorheological dependence of the NP diffusion tensor is attributed to the streamwise elongation and cross-stream contraction of RBCs under high shear, quantified by a capillary number. The RBC size is shown to be the characteristic length scale affecting the RBC-enhanced shear-induced diffusion (RESID), while the NP submicrometre size exhibits negligible influence on the RESID. Based on the observed scaling behaviours, empirical correlations are proposed to bridge the NP diffusion tensor to specific shear rate and haematocrit. The characterized NP diffusion tensor provides a constitutive relation that can lead to more effective continuum models to tackle large-scale NP biotransport applications.
Abstract not provided.
Abstract not provided.
Computers and Fluids
The biotransport of the intravascular nanoparticle (NP) is influenced by both the complex cellular flow environment and the NP characteristics. Being able to computationally simulate such intricate transport phenomenon with high efficiency is of far-reaching significance to the development of nanotherapeutics, yet challenging due to large length-scale discrepancies between NP and red blood cell (RBC) as well as the complexity of nanoscale particle dynamics. Recently, a lattice-Boltzmann (LB) based multiscale simulation method has been developed to capture both NP–scale and cell–level transport phenomenon at high efficiency. The basic components of this method include the LB treatment for the fluid phase, a spectrin-link method for RBCs, and a Langevin dynamics (LD) approach to capturing the motion of the suspended NPs. Comprehensive two-way coupling schemes are established to capture accurate interactions between each component. The accuracy and robustness of the LB–LD coupling method are demonstrated through the relaxation of a single NP with initial momentum and self-diffusion of NPs. This approach is then applied to study the migration of NPs in micro-vessels under physiological conditions. It is shown that Brownian motion is most significant for the NP distribution in 20μm venules. For 1 ∼ 100 nm particles, the Brownian diffusion is the dominant radial diffusive mechanism compared to the RBC-enhanced diffusion. For ∼ 500 nm particles, the Brownian diffusion and RBC-enhanced diffusion are comparable drivers for the particle radial diffusion process.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
We develop an idealized experimental system for studying how a small amount of gas can cause large net (rectified) motion of an object in a vibrated liquid-filled housing when the drag on the object depends strongly on its position. Its components include a cylindrical housing, a cylindrical piston fitting closely within this housing, a spring suspension that supports the piston, a post penetrating partway through a hole through the piston (which produces the position-dependent drag), and compressible bellows at both ends of the housing (which are well characterized surrogates for gas regions). In this system, liquid can flow from the bottom to the top of the piston and vice versa through the thin annular gaps between the hole and the post (the inner gap) and between the housing and the piston (the outer gap). When the bellows are absent, the piston motion is highly damped because small piston velocities produce large liquid velocities and large pressure drops in the Poiseuille flows within these narrow gaps. However, when the bellows are present, the piston, the liquid, and the bellows execute a collective motion called the Couette mode in which almost no liquid is forced through the gaps. Since its damping is low, the Couette mode has a strong resonance. Near this frequency, the piston motion becomes large, and the nonlinearity associated with the position-dependent drag of the inner gap produces a net (rectified) force on the piston that can cause it to move downward against its spring suspension. Experiments are performed using two variants of this system. In the single-spring setup, the piston is pushed up against a stop by its lower supporting spring. In the two-spring setup, the piston is suspended between upper and lower springs. The equilibrium piston position is measured as a function of the vibration frequency and acceleration, and these results are compared to corresponding analytical results (Torczynski et al., 2017). A quantitative understanding of the nonlinear behavior of this system may enable the development of novel tunable dampers for sensing vibrations of specified amplitudes and frequencies.
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Models and simulations are employed to analyze the motion of a spring-supported piston in a vibrated liquid-filled cylinder. The piston motion is damped by forcing liquid through a narrow gap between a hole through the piston and a post fixed to the housing. As the piston moves, the length of this gap changes, so the piston damping coefficient depends on the piston position. This produces a nonlinear damper, even for highly viscous flow. When gas is absent, the vibration response is overdamped. However, adding a little gas changes the response of this springmass-damper system to vibration. During vibration, Bjerknes forces cause some of the gas to migrate below the piston. The resulting pneumatic spring enables the liquid to move with the piston so as to force very little liquid through the gap. Thus, this "Couette mode" has low damping and a strong resonance near the frequency given by the pneumatic spring constant and the total mass of the piston and the liquid. Near this frequency, the amplitude of the piston motion is large, so the nonlinear damper produces a large net force on the piston. To analyze the effect of this nonlinear damper in detail, a surrogate system is developed by modifying the original system in two ways. First, the gas regions are replaced by upper and lower bellows with similar compressibility to give a well-defined "pneumatic" spring. Second, the upper stop against which the piston is pushed by its lower supporting spring is replaced with an upper spring, thereby removing the nonlinearity from the stop. An ordinary-differential-equation (ODE) drift model based on quasi-steady Stokes flow is used to produce a regime map of the vibration amplitudes and frequencies for which the piston is up or down for conditions of experimental interest. These results agree fairly well with Arbitrary Lagrangian Eulerian (ALE) simulations of the incompressible Navier-Stokes (NS) equations for the liquid and Newton's 2nd Law for the piston and bellows. A quantitative understanding of this nonlinear behavior may enable the development of novel tunable dampers for sensing vibrations of specified amplitudes and frequencies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Fluids Engineering, Transactions of the ASME
We show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston in a liquid-filled housing with narrow gaps between piston and housing surfaces that depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward against its supporting spring. We analyze the analogous but simpler situation in which the gas regions are replaced by bellows with similar pressure-volume relationships. We show that the spring formed by these bellows (analogous to the pneumatic spring formed by the gas regions) enables the piston and the liquid to oscillate in a mode with low damping and a strong resonance. We further show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston. This force can be much larger than the piston weight and tends to move the piston in the direction that decreases the flow resistance of the gap geometry.
Abstract not provided.
Abstract not provided.
Abstract not provided.
American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Analysis, simulations, and experiments are performed for a piston in a vibrated liquid-filled cylinder, where the damping caused by forcing liquid through narrow gaps depends almost linearly on the piston position. Adding a little gas completely changes the dynamics of this spring-mass-damper system when it is subject to vibration. When no gas is present, the piston's vibrational response is highly overdamped due to the viscous liquid being forced through the narrow gaps. When a small amount of gas is added, Bjerknes forces cause some gas to migrate below the piston. The resulting pneumatic spring enables the liquid to move with the piston so that little liquid is forced through the gaps. This "Couette mode" thus has low damping and a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. Near this frequency, the piston response is large, and the nonlinearity from the varying gap length produces a net force on the piston. This "rectified" force can be many times the piston's weight and can cause the piston to compress its supporting spring. A surrogate system in which the gas regions are replaced by upper and lower bellows with similar compressibility is studied. A recently developed theory for the piston and bellows motions is compared to finite element simulations. The liquid obeys the unsteady incompressible Navier-Stokes equations, and the piston and the bellows obey Newton's 2nd Law. Due to the large piston displacements near resonance, an Arbitrary Lagrangian Eulerian (ALE) technique with a sliding-mesh scheme is used to limit mesh distortion. Theory and simulation results for the piston motion are in good agreement. Experiments are performed with liquid only, with gas present, and with upper and lower bellows replacing the gas. Liquid viscosity, bellows compressibility, vibration amplitude, and gap geometry are varied to determine their effects on the frequency at which the rectified force makes the piston move down. This critical frequency is found to depend on whether the frequency is increased or decreased with time.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Fluids
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.
Abstract not provided.